

A02LOC622310.fm Page ii Tuesday, September 20, 2005 1:59 PM

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2006 by Ed Wilson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by

any means without the written permission of the publisher.

Library of Congress Control Number 2005933639

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information

about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-

national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments

to mspinput@microsoft.com.

Microsoft, Active Directory, Excel, JScript, Microsoft Press, MSDN, Outlook, Visual Basic, Win32,

Windows, Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and

events depicted herein are fictitious. No association with any real company, organization, product, domain

name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-

out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,

or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly

by this book.

Acquisitions Editor: Martin DelRe

Project Editors: Melissa von Tschudi-Sutton and Barbara Moreland

Technical Editor: Bob Hogan

Copy Editor: Christina Palaia

Indexer: Julie Bess

Body Part No. X11-50076

A03D622310.fm Page iii Tuesday, September 6, 2005 12:53 PM

This book is dedicated to my best friend and wife, Teresa.

A03D622310.fm Page iv Tuesday, September 6, 2005 12:53 PM

v

Contents at a Glance

Part I Getting Started with WMI/

1 Introducing WMI . 3

2 Configuring WMI. 29

Part II WMI Queries and Events/

3 Using Basic WMI Queries . 55

4 Using Advanced WMI Queries . 81

5 Using WMI Events . 103

Part III Connect Server and Additional Privileges/

6 Using the SWbemLocator Methods . 123

7 Requesting Additional Privileges for WMI . 139

Part IV Classes/

8 Understanding WMI Classes . 157

9 Using Win32 WMI Classes . 173

10 Using System Hardware Classes . 189

11 Using Operating System Classes . 221

12 Using the Performance Counter Classes . 255

Part V Security and Troubleshooting/

13 Understanding WMI Security . 273

14 Troubleshooting WMI. 291

vi Contents at a Glance

Part VI Appendixes/

A Scripting API Methods and Properties. 313

B WMI Security Constants . 317

C WMI Security Privileges and Operations . 319

D Computer System Hardware Classes . 321

E Operating System Classes. 329

F Performance Monitor Classes . 345

A05T622310.fm Page vii Tuesday, September 27, 2005 7:55 AM

Table of Contents

Acknowledgments . xix

About This Book . xxi

Part I Getting Started with WMI

1 Introducing WMI . 3

Before You Begin . 3

Defining WMI . 4

Querying and Starting a Service . 6

Defining the Query . 7

Evaluating the State of the Service . 7

Capturing the Return Code . 8

Using WMI as a Tool . 9

Implementing Microsoft WBEM . 10

Describing Objects Using the CIM . 11

Working with Namespaces . 12

Working with Providers . 16

Understanding Classes . 17

Implementing Programming Interfaces . 19

Using the WMI Architecture . 20

Using Managed Objects and Providers . 20

WMI Infrastructure . 21

WMI Applications . 22

WBEM Repository. 22

Location . 22

Retrieving from the Repository . 23

Handing Off to a Provider . 23

Summary . 24

Quiz Yourself . 24

On Your Own. 24

Lab 1 Installing and Configuring the Core Platform SDK 24

Lab 2 Online Install (Optional) . 25

Lab 3 Navigating the SDK . 26

vii

A05T622310.fm Page viii Tuesday, September 27, 2005 7:55 AM

viii Table of Contents

2 Configuring WMI. 29

Before You Begin . 29

Understanding the WMI Control Snap-in . 30

Configuring Logging . 30

Backing Up the WMI Repository . 32

Restoring the WMI Repository. 33

Changing the Target of Operations . 35

Understanding Registry Settings . 36

Enabled . 36

LogSecurityFailures. 37

LogSecuritySuccesses . 38

Remote. 39

Using the CIM Object Manager. 39

Implementing Providers . 41

Configuring WMI Service Settings . 42

Automatically Recovering Providers . 42

Initial Installation . 42

Manually Editing the Autorecover MOF Key . 44

Adding the #pragma autorecover tag to the MOF File 44

Using Mofcomp.exe . 45

Exploring WMI Settings with WMI . 45

Summary . 46

Quiz Yourself . 46

On Your Own . 47

Lab 4 Backing Up the WMI Repository . 47

Lab 5 Restoring the WMI Repository . 48

Lab 6 Exploring WMI Settings via Script . 49

Part II WMI Queries and Events

3 Using Basic WMI Queries . 55

Before You Begin . 55

Understanding WQL . 56

Using the Moniker . 56

The Prefix . 57

The Security . 57

The Path . 58

Using the Defaults . 58

A05T622310.fm Page ix Tuesday, September 27, 2005 7:55 AM

Table of Contents ix

Understanding Data Queries . 59

Using the Select Statement . 60

Select Everything from Everything . 60

Select Some Things from Everything . 61

Where Is the Where Clause? . 62

Select Everything from Some Things . 62

Comparison Operators . 64

Select Some Things from Some Things. 65

IS Operator . 65

Compound Where Clause . 66

Is Not Operator . 67

Understanding Event Queries . 68

Understanding Schema Queries. 71

SWbemObject . 71

SWbemObjectPath . 74

Summary . 76

Quiz Yourself . 76

On Your Own . 77

Lab 7 Exploring Win32_NTDomain .77

Lab 8 Using Schema Queries . 77

4 Using Advanced WMI Queries . 81

Before You Begin . 81

Using __Class . 82

Using ISA . 82

Scripting API Objects . 83

SWbemServices . 83

Using the associators of Command . 83

Using the references of Command . 85

Modifying the Where Clause . 86

Using the ExecQuery Method . 88

Returning an SWbemObjectSet Collection . 88

Iflags . 88

Error Codes . 89

Using the Get Method . 89

SWbemLastError . 90

SWbemObject . 91

SWbemObjectPath . 92

A05T622310.fm Page x Tuesday, September 27, 2005 7:55 AM

x Table of Contents

SWbemObjectSet . 94

SWbemProperty . 95

SWbemPropertySet . 95

SWbemSink . 96

Introducing New Objects in Windows XP and Windows Server 2003 96

SWbemDateTime . 97

SWbemObjectEx . 97

SWbemRefresher . 97

SWbemRefreshableItem. 98

SWbemServicesEx . 98

Summary . 98

Quiz Yourself . 98

On Your Own . 99

Lab 9 Working with the AutoDiscovery Process . 99

Lab 10 Using the Get Method for Inventory Types of Data 101

5 Using WMI Events . 103

Before You Begin . 103

Using SWbemEventSource. 104

NextEvent . 104

Security_ . 105

Working with SWbemServices . 106

ExecNotificationQuery . 106

ExecNotificationQueryAsync . 107

Understanding Event Consumers . 109

Creating an Instance of the Consumer . 110

Creating an Event Filter . 110

Creating an Event Query . 111

Binding the Filter to the Consumer . 111

ActiveScriptEventConsumer . 112

Using SMTPEventConsumer . 113

Understanding the New Event Consumers . 114

LogFileEventConsumer . 114

NTEventLogEventConsumer . 114

CommandLineEventConsumer . 115

Working with Different Types of Events . 115

Class Events . 115

Instance Events . 115

A05T622310.fm Page xi Tuesday, September 27, 2005 7:55 AM

Table of Contents xi

Namespace Events . 117

Eventing Events . 117

Summary . 117

Quiz Yourself . 117

On Your Own. 118

Lab 11 Creating a Video Change Notification Script 118

Lab 12 Expanding the Video Notification Script . 119

Part III Connect Server and Additional Privileges

6 Using the SWbemLocator Methods . 123

Before You Begin . 123

Using the Locator Object . 124

Using Alternate Credentials . 124

Using ConnectServer in Different Ways. 125

Changing the Defaults . 126

Omitting Fields . 127

Summary . 133

Quiz Yourself . 134

On Your Own. 134

Lab 13 Using the ConnectServer Method Locally . 134

Lab 14 Using Alternate Credentials in a Script . 136

7 Requesting Additional Privileges for WMI . 139

Before You Begin . 139

Understanding Privileges . 140

Obtaining a Collection of Privileges . 141

Representing a Single Privilege . 142

Adding Additional Privileges . 143

Adding a Privilege with Add . 143

Adding a Privilege as a String. 144

Using the Item Method . 145

Using the DeleteAll Method . 145

Removing a Specific Privilege. 146

Finding the Most Common Privileges. 147

Using Privileges. 147

In the Moniker . 147

Using SWbemLocator . 148

Summary . 150

A05T622310.fm Page xii Tuesday, September 27, 2005 7:55 AM

xii Table of Contents

Quiz Yourself . 151

On Your Own . 151

Lab 15 Setting the Page File Size . 151

Lab 16 Listing the Working Set. 153

Part IV Classes

8 Understanding WMI Classes . 157

Before You Begin . 157

Using the System Classes . 157

Abstract Base Classes . 158

Using System Classes as Base Classes . 158

Identifying the Version of WMI . 159

Working with System Security . 159

Understanding the CIM Classes. 163

CIM Classes Are Really DMTF Classes . 165

Summary . 167

Quiz Yourself . 168

On Your Own . 168

Lab 17 Exploring Abstract Classes . 168

Lab 18 Examining WMI Classes . 170

9 Using Win32 WMI Classes . 173

Before You Begin . 173

Working with Applications . 174

Working with Software Classes . 176

Understanding the MSI Installer Provider . 179

Understanding WMI Service Management . 181

Writing to the Properties . 182

Summary . 183

Quiz Yourself . 183

On Your Own . 184

Lab 19 Working with the Win32_Product Class . 184

Lab 20 Making Changes to WMI Settings . 185

10 Using System Hardware Classes . 189

Before You Begin . 189

Using Cooling Device Classes . 189

Working with Win32_Fan . 190

Probing the Win32_TemperatureProbe Class . 191

A05T622310.fm Page xiii Tuesday, September 27, 2005 7:55 AM

Table of Contents xiii

Examining the Input Device Classes . 192

Working with the Win32_Keyboard Class . 192

Working with the Win32_PointingDevice Class . 193

Mass Storage Classes . 194

Checking the Autocheck Settings . 195

Examining the Win32_CDROMDrive Class . 195

Examining the Disk Drive . 196

Examining the Floppy Drive . 196

Working with Tapes . 196

Motherboard, Controller, and Port Classes. 198

Reporting with Port Classes . 198

Networking Device Classes . 199

Working with the Network Adapter Class . 199

Using the Adapter Configuration Class . 201

Power Classes . 204

Batteries Are Included . 204

Using Portable Batteries . 205

Printing Classes . 207

Finding Drivers Used for Print Devices . 207

Printing Information on Printers . 208

Printing the Print Jobs . 210

Working with Printer Ports . 211

Telephony Classes . 211

Video and Monitor Classes . 212

Displaying the Display . 212

Controlling the Video . 213

Summary . 215

Quiz Yourself . 216

On Your Own. 216

Lab 21 Hardware Inventory . 216

11 Using Operating System Classes . 221

Before You Begin . 221

Using the COM-Related Classes . 221

Using the Win32_ClassicComClass . 222

Examining the Desktop . 222

Listing the Drivers on a System . 223

Examining System Drivers . 223

A05T622310.fm Page xiv Tuesday, September 27, 2005 7:55 AM

xiv Table of Contents

Exploring the File System . 224

Working with Directories . 224

Getting the Win32_Directory Class . 224

Understanding Job Objects . 226

Identifying Named Job Objects . 226

Identifying Resources Used by Job Objects . 227

Working with Memory Devices and Page Files . 228

Setting the Page File . 228

Using the Multimedia Audiovisual Class . 229

Retrieving a Single Codec . 229

Working with Networking . 230

Using Operating System Events. 231

Examining Operating System Settings . 232

Employing the Process Classes . 232

Configuring Application Startup . 233

Working with the Registry . 234

Modifying the Registry Size . 234

Leveraging the Scheduler Job Classes . 235

Marking Time . 236

Working with the Job Scheduler . 237

Using the Security Classes . 238

Reading Security on a Folder . 239

Using the Service Classes . 241

Creating a Service . 241

Deleting a Service . 242

Working with Shares . 243

Reporting Connections to the Servers . 243

Starting with the Start Menu . 244

Monitoring Storage . 245

Using the Win32_Volume Methods . 245

Understanding User Classes . 246

Working with Logon Sessions . 246

Working with User Accounts . 247

Leveraging the Windows NT Event Log . 247

Backing Up Event Log Files . 247

Easing Windows Product Activation . 249

Summary . 250

Quiz Yourself . 250

A05T622310.fm Page xv Tuesday, September 27, 2005 7:55 AM

Table of Contents xv

On Your Own. 251

Lab 22 Monitoring the Shutdown of Applications . 251

Lab 23 Performing a Controlled Shutdown of Apps . 252

12 Using the Performance Counter Classes . 255

Before You Begin . 255

Using Formatted Performance Counter Classes . 256

Understanding Performance Counter Classes . 256

Refreshing the Data . 258

Using the Refresher Object . 258

Refreshing a Single Counter . 259

Finding How Long Your System Has Been Up . 260

Examining Process Threads . 261

Measuring Memory Utilization . 262

Using Raw Performance Counter Classes . 263

Monitoring Processor Utilization . 263

Working with the Logical Disk . 264

Summary . 265

Quiz Yourself . 265

On Your Own. 266

Lab 24 Working with Formatted Performance Classes 266

Lab 25 Using Unformatted Performance Counters . 267

Part V Security and Troubleshooting

13 Understanding WMI Security . 273

Before You Begin . 273

Using WMI Namespace Security . 274

Understanding the Defaults . 274

Modifying Security on WMI Namespaces . 274

Working with Namespace Security Descriptors . 275

Using the WMI Control Tool to Set Security . 277

Scripting WMI Namespace Security . 277

Using the __SystemSecurity Class . 278

Working with Share Permissions . 281

Who Has Access to This Share? . 283

Mapping Users and Rights . 284

Summary . 285

Quiz Yourself . 286

A05T622310.fm Page xvi Tuesday, September 27, 2005 7:55 AM

xvi Table of Contents

On Your Own . 286

Lab 26 Creating a WMI Namespace . 286

Lab 27 Setting WMI Namespace Permissions . 289

14 Troubleshooting WMI. 291

Before You Begin . 291

Identifying the Problem . 291

Spotting Common Sources of Errors . 292

Testing the Local WMI Service . 292

Using the WMI Control Tool . 292

Using Scriptomatic . 294

Examining the Status of the WMI Service . 294

Using Wbemtest.exe . 295

Testing Remote WMI Service . 296

Using the WMI Control Tool Remotely . 296

Testing the Scripting Interface . 297

Obtaining Diagnostic Information . 298

Enabling Verbose WMI Logging . 298

Examining the WMI Log Files . 299

Using the Err Tool . 301

Using Mofcomp.exe . 302

Using WMIchk . 303

General WMI Troubleshooting Steps . 303

Summary . 304

Quiz Yourself . 304

On Your Own . 305

Lab 28 Working with Logging . 305

Lab 29 Compiling MOF Files . 309

Table of Contents xvii

Part VI Appendixes

A Scripting API Methods and Properties. 313

B WMI Security Constants . 317

C WMI Security Privileges and Operations . 319

D Computer System Hardware Classes . 321

E Operating System Classes. 329

F Performance Monitor Classes . 345

Index . 353

About the Author . 373

A05T622310.fm Page xvii Wednesday, September 28, 2005 12:04 PM

A05T622310.fm Page xviii Tuesday, September 27, 2005 7:55 AM

xix

Acknowledgments

Many people assisted in bringing this book to fruition. First and foremost, I must thank my
agent, Claudette Moore of the Moore Literary Agency, who ensured the proper publisher was
found for this book. Martin DelRe at Microsoft Press has been awesome to work with and is an
enthusiastic supporter of scripting in general and of Windows Management Instrumentation
(WMI) in particular. Melissa von Tschudi-Sutton, Barbara Moreland, and Maureen Zimmerman,
also at Microsoft Press, have kept my nose to the grindstone and forestalled my natural ten-
dency to procrastinate. Bob Hogan has not only read the entire manuscript several times and
offered numerous insightful comments, but he has also run (and run and run) all the scripts
associated with this book. I’d also like to thank Christina Palaia for her careful copyediting,
helping to make my writing the best that it can be.

Lori Brady has been an awesome reviewer, has kept me honest, and has forced me to write
clear text. David Schwinn and Bill Mell, both longtime reviewers, offered insightful comments
and pointed out parts that were “boring.” Alain Lissoir and Peter Costantini from Microsoft
provided valuable feedback. Mary Gray from Microsoft has been a dedicated champion of this
project and was invaluable in introducing me to key players on the WMI team. Travis Frank-
lin, Karl Romike, Hal Lange, and Terry Brazzell all provided some really good feedback. Spe-
cial mention must be made of Bob Wilton from Microsoft Product Support Services (PSS), for
allowing me to use his WMIcheck utility, and of Gupreet Singh Jutla, also from Microsoft PSS,
for allowing me to use his WMIScript_tocsv.exe utility. Chris Scoville from the Microsoft WMI
Software Development Kit (SDK) team also gave me his WMI Code Creator tool. All of these
utilities are in the tools directory on the companion CD, and I think you will enjoy using
them. If you ever run into Bob, Gupreet, or Chris, be sure to thank him.

Finally, I must mention my wife, Teresa, who read this entire book at least three times (and she
is not even a “computer person”). Thanks to everyone.

A06A622310.fm Page xix Tuesday, September 27, 2005 3:12 PM

A07A622310.fm Page ii Friday, September 9, 2005 9:25 AM

A07I622310.fm Page xxi Tuesday, September 27, 2005 10:44 AM

About This Book

Microsoft Windows Server 2003 marks a significant step forward in manageability, security,
and stability. Network administrators and consultants, many of whom are the sole survivors
of recent budget cuts, downsizing, and outsourcing, are left struggling to manage burgeoning
task lists that never, ever seem to shrink. In a typical day, 5 to 10 tasks are completed—and 15
to 20 tasks are added. Although most of these tenacious networkers have heard of or have
even been exposed to Microsoft Windows Management Instrumentation (WMI), they have lit-
tle time to explore its power or to develop scripts to solve real-world problems. Indeed, one
network administrator recently commented to me that scripting was basically useless because
“if it takes me two hours to develop a script while I am facing a crisis, that is too long.” Her
solution was to call for lots of help and to go around and make changes manually. This situa-
tion is all too common and downright heartbreaking when you think about it. The right tool
is right here…it is free…and it is very powerful—it is WMI.

As a senior consultant for Microsoft Corporation, I spend every week working with the
world’s largest companies. In every instance, the IT staff has heard of and wants to make more
effective use of WMI. Questions, however, abound: Can I do this with WMI? Can I do that
with WMI? Can I run this on multiple computers? What if the logged-on user does not have
admin rights? Why does this script work on Windows Server 2003, but not on Microsoft Win-
dows XP with Service Pack 2 installed? How can I find out everything I can do with WMI on
the network?

Microsoft Windows Scripting with WMI: Self-Paced Learning Guide addresses these common
questions and more.

Background
Windows Server 2003 makes significant changes to WMI. Dozens of new and exciting provid-
ers expose hundreds of new WMI classes and methods. In addition, many of the things you
could do with the Active Directory directory service in Microsoft Windows 2000 Server have
been removed. The result is that any WMI book based on Windows 2000 is simply out of
date.

Network administrators and consultants need to go beyond simply developing a script that
queries a single WMI class by using the Microsoft Scriptomatic. Although the Scriptomatic is
useful for exploring WMI and can save you time by enabling you to cut and paste class prop-
erty names, it simply does not substitute for deep, up-to-date knowledge of WMI.

Measuring, monitoring, and alerting are all tasks that WMI can easily perform; however, most
network administrators and consultants relegate WMI to simply querying for basic informa-
tion: How large is the hard disk? How much memory is installed? How fast is the processor?

xxi

A07I622310.fm Page xxii Tuesday, September 27, 2005 10:44 AM

xxii About This Book

Although these are all vital questions, WMI can do much more. The problem is that, until
now, no book has been written in a clear, concise manner to assist IT professionals in gaining
the vital skills required to leverage this flexible technology.

Editorial Objectives and Approach
Microsoft Windows Scripting with WMI: Self-Paced Learning Guide can equip readers with the
tools to harness the power of WMI. Concepts are broken down into easy-to-complete, simple-
to-understand lessons so that the reader can quickly gain the skills necessary to write custom
scripts to manage, monitor, and control Windows Server 2003 networks.

The approach I take to teaching readers how to use WMI scripting to automate servers that
run the Windows operating system is similar to the approach I use in my highly successful
book Microsoft Windows Scripting Self-Paced Learning Guide. I take a topic, develop a WMI
script that illustrates the essential learning point, and then move on to the next topic. Each
topic I present is supported with one or more Microsoft Visual Basic Scripting Edition
(VBScript) scripts that assist in developing the main point of the lesson. The scripts are real,
complete, and fully functioning—not “scriptlets.” Two lab exercises per chapter reinforce the
material developed in the text.

This is a book about WMI—not VBScript. Therefore, coverage of VBScript is incidental to the
coverage of WMI. I do discuss some advanced VBScript topics because they lend great power
and flexibility to the scripts presented. If you are looking for a VBScript tutorial, you should
get a copy of my Microsoft Windows Scripting Self-Paced Learning Guide. Indeed, the self-paced
learning guide and this WMI book complement one another, and together they form the basis
of a complete scripting library.

Microsoft Windows Scripting with WMI: Self-Paced Learning Guide assumes much of the knowl-
edge presented in the self-paced learning guide. No information is duplicated.

Is This Book for Me?
Microsoft Windows Scripting with WMI: Self-Paced Learning Guide is aimed at several audiences,
including the following:

■	 Windows networking consultants Anyone who wants to standardize and automate
the installation and configuration of Microsoft .NET Framework networking compo-
nents

■	 Windows network administrators Anyone who wants to automate the day-to-day
management of Windows Server 2003 networks

■	 Windows Help desk staff Anyone who wants to verify configuration of remotely con-
nected desktops

A07I622310.fm ge xxiii Tuesday, September 27, 2005 10:44 AMPa

About This Book xxiii

■	 Microsoft Certified Systems Engineers (MCSEs) and Microsoft Certified Trainers
(MCTs) Although not a strategic core competency within the Microsoft Certified Pro-
fessional (MCP) program, a few questions about scripting do come up from time to time
on various exams

■	 General technical staff Anyone who wants to collect information, configure settings
on computers that run Windows XP, or implement management through WMI, Win-
dows Script Host (WSH), or Web-Based Enterprise Management (WBEM)

■	 Power users Anyone who wants to obtain maximum power and configurability of
computers that run Windows XP either at home or in an unmanaged desktop work-
place environment

Organization of the Book
This book is divided into six parts. Each section builds on the others to provide a thorough
understanding of how to work with WMI from a scripting standpoint. The six parts of the
book are discussed in the following subsections.

Part I: Getting Started with WMI

There are two chapters in Part I. In Chapter 1, “Introducing WMI,” I provide a comprehensive
introduction to WMI and discuss in a general manner where WMI came from, how classes are
formed, and the WMI architecture. I close the chapter with a discussion of the WMI database,
called the repository. In Chapter 2, “Configuring WMI,” I discuss in detail how to tweak WMI.
We look at the registry settings related to WMI, and you get your first look at the WMI Control
Properties console.

■ Chapter 1: Introducing WMI

■ Chapter 2: Configuring WMI

Part II: WMI Queries and Events

Did you know WMI has its own query language? It is similar to structured query language
(SQL) but is called WQL instead. WQL, which stands for WMI Query Language, is actually a
subset of SQL but also includes enhancements. In Chapter 3, “Using Basic WMI Queries,” we
examine much of the WQL language. In addition, we look at two different methods available
for executing scripts. We build upon this information in Chapter 4, “Using Advanced WMI
Queries,” where you see the power and flexibility of using special query strings such as the ISA
operator. In Chapter 5, “Using WMI Events,” you learn how to make your scripts respond to
changes in the operating system or file system. If a new process starts, you can have your
script perform a specific action. This adds an entirely new dimension to your code.

A07I622310.fm Page xxiv Tuesday, September 27, 2005 10:44 AM

xxiv About This Book

■ Chapter 3: Using Basic WMI Queries

■ Chapter 4: Using Advanced WMI Queries

■ Chapter 5: Using WMI Events

Part III: Connect Server and Additional Privileges

Chapter 6, “Using the SWbemLocator Methods,” introduces the rich programming model
available from the SWbemLocator object. This is the way to make remote connections to com-
puters on the network, and it even enables you to supply alternative credentials. It is a very
rich model, so I have some tips and tricks that will enable you to mine this object easily. Chap-
ter 7, “Requesting Additional Privileges for WMI,” explores the WMI security model in detail
and provides guidance on when to use each of the dozens of privilege strings that can be sup-
plied to a WMI query.

■ Chapter 6: Using the SWbemLocator Methods

■ Chapter 7: Requesting Additional Privileges for WMI

Part IV: Classes

Classes provide the core functionality of WMI. But do you know how classes are organized?/
Most people do not realize that there is a pattern to the way the WMI classes are stored in the /
hierarchy. Once you recognize this pattern, which is discussed in each chapter in this section/
of the book, you will uncover new vistas in your scripting life. /

■ Chapter 8: Understanding WMI Classes/

■ Chapter 9: Using Win32 WMI Classes/

■ Chapter 10: Using System Hardware Classes/

■ Chapter 11: Using Operating System Classes/

■ Chapter 12: Using the Performance Counter Classes/

Part V: Security and Troubleshooting

Everyone wants to talk about security—and for good reason. It does not make sense to have
something that enables administrators to make changes to every workstation on the network
if hackers can use the same tools to make changes to every workstation on the network. So,
there is a balancing act between security and functionality. In Chapter 13, “Understanding
WMI Security,” we explore some of the security issues you might encounter while working
with WMI and examine using WMI to make security configuration changes. This chapter
resumes the discussion of the WMI security model begun in Chapter 7. Chapter 14, “Trouble-

A07I622310.fm Page xxv Tuesday, September 27, 2005 10:44 AM

About This Book xxv

shooting WMI,” examines troubleshooting. Once you start using WMI for your critical appli-
cations, you must be able to troubleshoot and maintain WMI.

■ Chapter 13: Understanding WMI Security

■ Chapter 14: Troubleshooting WMI

Part VI: Appendixes

The appendixes of this book are designed to be used. In fact, I consult them on a regular basis. /
If you need to know which classes have the most methods or which classes have the most /
properties, these appendixes are your best source of information. /

■ Appendix A: Scripting API Methods and Properties/

■ Appendix B: WMI Security Constants/

■ Appendix C: WMI Security Privileges and Operations/

■ Appendix D: Computer System Hardware Classes/

■ Appendix E: Operating System Classes/

■ Appendix F: Performance Monitor Classes/

About the Companion CD
The CD accompanying this book contains additional information and software components,
including the following files:

■	 Lab files The lab files contain starter scripts, some text files, and completed lab solu-
tions for each of the 29 labs contained in this book. In addition, each script discussed in
the book is contained in the folder corresponding to the chapter number.

■	 eBooks The CD contains two eBooks: an electronic version of this book and an elec-
tronic version of my book Microsoft Windows Scripting Self-Paced Learning Guide. You can
view the eBooks on-screen by using Adobe Acrobat or Adobe Reader.

■	 Supplemental scripts In addition to the lab scripts and the scripts discussed in each
chapter, a collection of supplemental scripts is also available. In some cases these scripts
further illuminate a particular topic discussed in the book and are found in the corre-
sponding chapter’s numbered folder. In other cases they can be found in the supple-
mental scripts folder. Inside the supplemental scripts folder, you will find more than
900 WMI scripts that cover all properties of all Win32 WMI classes in the root\cimv2
namespace. If you do not know what all this means, you will by the time you are finished
reading this book.

A07I622310.fm Page xxvi Tuesday, September 27, 2005 10:44 AM

xxvi About This Book

■	 Utility scripts Thirty-two of my favorite utility scripts are in the Utility scripts folder
on the companion CD. These scripts perform an incredible array of tasks. In some cases
they are functions that draw a separator line on a page; in other cases they translate cer-
tain WMI messages into more presentable text. Many of these utility scripts are used in
the labs to provide you with real-life examples of their employment in production script-
ing situations.

■ Tools The following tools are also included for your use:

■ Scriptomatic 2.0

■ WMICHK

■ WMI Code Creator

■ WMIScript_to_csv

■ WMI Administrative Tools

■ HTA Helpomatic

■ Primal Script Evaluation Version

Computer System Requirements
Be sure your computer meets the following system requirements for installation of the sample
scripts and tools included on the companion CD.

■	 Minimum 233 megahertz (MHz) processor in the Intel Pentium/Celeron family or the
AMD K6/Atholon/Duron family

■ 128 megabytes (MB) of RAM

■ 1.5 gigabytes (GB) of hard disk space available

■ Display monitor capable of 800 × 600 resolution or higher

■ CD-ROM drive or DVD-ROM drive

■ Mouse or compatible pointing device

■ Windows Server 2003 or Windows XP

A07I622310.fm Page xxvii Tuesday, September 27, 2005 10:44 AM

About This Book xxvii

Technical Support

Every effort has been made to ensure the accuracy of this book and the contents of the com-
panion CD. Microsoft Press provides general support information for its books and compan-
ion CDs at the following Web site:

http://www.microsoft.com/learning/support/books

To search for book and CD corrections for this book by using the book’s ISBN, go to:

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book or the companion CD, please
send them to Microsoft Press using either of the following methods.

E-Mail mspinput@microsoft.com

Postal Mail Microsoft Press
Attn: Microsoft Windows Scripting with WMI: Self-Paced Learning
Guide Project Editor

One Microsoft Way
Redmond, WA 98052

Please note that Microsoft software product support is not offered through the above
addresses.

A07I622310.fm ge xxviii Tuesday, September 27, 2005 10:44 AMPa

P01622310.fm September 27, 2005 Tuesday,Page 1 2:04 PM

Part I
Getting Started with WMI

P01622310.fm September 27, 2005 Tuesday,Page 2 2:04 PM

Chapter 1

Introducing WMI

It seems that nearly everyone knows something about Windows Management Instrumentation
(WMI); however, it also seems everyone knows something different. This chapter provides a
foundation for the remainder of the book. First, we look at the Microsoft implementation of
Web-Based Enterprise Management (WBEM). Next, we examine how the structure of the Com
mon Information Model (CIM) affects our ability to work with WMI. Once you understand the
organization of WMI, it is important to learn about the components that make up the WMI
architecture—so we then take a quick look at various objects and providers. Finally, we discuss
the key to the entire system: the WMI repository.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ Fundamentals of reading and writing Microsoft Visual Basic Scripting Edition
(VBScript)

■ Basics of error handling

■ Basics of Microsoft Windows Server operating systems administration

After you complete this chapter, you will be familiar with the following concepts:
■ Fundamentals of WMI

■ The Microsoft implementation of WBEM

■ WMI architecture

■ Managed providers and objects

■ WBEM repository

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter01 folder.
3

4 Part I: Getting Started with WMI
Defining WMI
Windows Management Instrumentation (WMI) is a tool that gives network administrators
the ability to manage hundreds (or thousands) of computers in a safe, structured, systematic
manner. WMI technology can be leveraged by complex, full-featured network management
applications such as Microsoft Systems Management Server (SMS) or by a lone network
administrator putting together a VBScript based on Scriptomatic.

Scriptomatic is a Microsoft scripting tool that assists you in writing WMI scripts and teaches
you the fundamental concepts of WMI scripting. Scriptomatic can be downloaded from the
following location: http://www.microsoft.com/technet/scriptcenter/createit.mspx.

The Basics of WMI The basics of WMI are covered in Chapters 8, 9, and 10 of Microsoft
Windows Scripting Self-Paced Learning Guide (http://www.microsoft.com/MSPress/books/
6789.asp). I won’t repeat that information here because the learning guide is a complementary
book that is great for reinforcing your VBScript skills and for supplementing your learning in
this field.

Windows management, the first two words in WMI, tell you that the product is designed, imple
mented, and intended to be used to assist in managing Microsoft Windows networks. Most
people understand what is involved in managing a Windows network, but the third word in
WMI, instrumentation, confuses many.

Instrumentation, as used here, has its roots in the manufacturing industry. For example, tanks
in paper mills have level indicators attached to them that tell the computers in the Wet End
Control room the number of gallons of pulp in the tanks. The level is critical to operators for
two reasons: knowing the level helps avoid overflowing a tank and running a tank dry, starv
ing the paper machine of fiber. The indicators, sensors, and relays involved in such a system
are called instrumentation. If the level indicators are programmed with some intelligence, they
can automate much of the paper technician’s tasks. As shown in Figure 1-1, when the tank
begins to run low on pulp, the computer sends a signal to valve A to open and allow a greater
flow of pulp into the tank. If the tank is filling too rapidly, the computer sends a signal to valve
A to close or to throttle as appropriate.

Chapter 1: Introducing WMI 5
Pump Valve Control Loop

Pump
Valve

Level Control Loop

Level
Control
Valve

Overflow
Valve

Overflow Control Loop

Tank

Pump

Pump
Discharge

Pump Control Loop

Pump Discharge
Control Loop

Process Control
Computer

Figure 1-1 Instrumentation enabling a computer to control the level of pulp in a tank used in the
paper industry

In the same way that instrumentation can help control the level of pulp in a tank, instrumen
tation can be used to control the behavior of applications. The tank scenario includes the fol
lowing three operations:

■ Query the level property of the tank.

■ Evaluate the level.

■ Execute open-valve or close-valve method.

These same types of operations are needed in controlling software: query, evaluate, and exe
cute. We can apply the principles of instrumentation to a common network administration
scenario: “What is going on with service X?”

Quick Check

Before you get too confused by all the new terms, take a few seconds to check your progress.
Throughout this book, I use a Quick Check feature from time to time to help you reinforce your
learning.

Q: What two concepts are expressed in the term WMI?

A: The two concepts expressed in the term WMI are management and instrumentation.

6 Part I: Getting Started with WMI
Q: What does instrumentation have to do with network administration?

A: Instrumentation enables applications to report on their health and to take corrective
action if there is a problem.

Q: What are two broad categories of scripts that can be developed with WMI?

A: Two broad categories of scripts that can be developed with WMI are reporting and taking
action based on results of reporting.

Querying and Starting a Service
The Win32_Service class can return the state of a service on a remote server. If you add logic
based on the current state of a particular service, you can execute the StopService or the Start-
Service method as appropriate. The following script, called QueryAndStartAService.vbs, does
this. This script is in the Chapter01 scripts folder on the accompanying CD.

One thing to keep in mind, however, is that this script is not designed to handle the service if
it is disabled. To add this capability to the script, you will need to use the changeStartMode
method to set the service to manual, which you would do right after you retrieve the start-
Mode of the service. Once you call the startService method, you capture the return code in a
variable called errRTN. A return code of 0 means the operation was successful; anything else
is an error. (Table 1-1 lists the potential return codes and their meaning. Error codes are
talked about in the next section.) This script is in the Chapter01 scripts folder on the accom
panying CD.

queryAndStartAService.vbs
objName = "'alerter'"

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select state,startmode from win32_service where Name = " & objName

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo ": " & objItem.state

Wscript.Echo ": " & objItem.startmode

If objItem.state <> "running" Then

errRTN =objItem.startservice

End If

Wscript.echo errRTN

Next

A quick look at the queryAndStartAService.vbs script provides some interesting information.
First, I assign the value “ ‘alerter’ ” to the objName variable. This is the service I want to start.
Note that the value must be contained inside single quotation marks that are then enclosed in
double quotation marks. The double quotes in VBScript indicate that you are going to use

Chapter 1: Introducing WMI 7
everything inside the quotes as a string. A string is a type of data that is read but not inter
preted by the scripting engine. In WMI, single quotes are used to pass a parameter, or a value,
into the WMI query. StrComputer is assigned the value of ".", which is a shortcut name for the
local machine. The wmiNS variable is used to hold the name of the WMI namespace to which
you will connect. The root\cimv2 namespace contains hundreds of very good WMI classes,
and it is in this namespace that you find the Win32_Service class. These are the classes we will
use to administer a server.

Defining the Query

The WMI query is contained in the variable called wmiQuery, and it uses a structured query
language (SQL)–like language called WMI Query Language (WQL). In reality, WQL is a sub-
set of SQL and is used in much the same manner. (Similarities and differences are covered in
Chapter 3.) For now, we select two properties (state and startmode) from the Win32_Service
class, but only if the name of the service happens to be Alerter. The name of the service is not
case sensitive. (For more information on the basics of the WMI Query Language, refer to
Chapter 9 of Microsoft Windows Scripting Self-Paced Learning Guide [Microsoft Press, 2004].)

The next step is to make the connection into WMI by using the moniker winmgmts:\\. The
winmgmts moniker is not case sensitive, and, when using the execQuery method, the informa
tion that is returned is contained in a collection. Because you have a collection to work with,
it is necessary to use the for next command to walk through the collection and perform the
action defined inside the loop. For next is referred to as a “sandwich command” because for
and next act like the slices of bread on the top and bottom of a traditional sandwich with the
real meat (the good stuff, the action inside the loop) in between. This is the case here: objItem
refers to one instance of an item that came back from the WMI query. It is used with the data
inside the for next command, and colItems refers to the data that came back from the query
into WMI.

Evaluating the State of the Service

If the state of the Alerter service is not equal to running, start the Alerter service by using the
StartService method. The StartService method provides a return code for its attempted activity.
To capture this return code, you can use a variable called errRTN, as demonstrated in the fol
lowing code:

If objItem.state <> "running" Then

errRTN =objItem.startservice

End If

It is perfectly acceptable to call a method without capturing the return code (particularly if
you have not scripted anything to handle the return code). In this case, you want to know
whether WMI was able to start the Alerter service.

8 Part I: Getting Started with WMI
What Is a Return Code?
When a method is called in WMI, it returns with a number called a return code that is
equal to the result of the method, For instance, a return code of 0 means the operation
was successful. (Table 1-1 lists other return codes that come back if the operation is not
successful.) I think of this in baseball terms: “no runs, no hits, no errors”—a perfect
inning for a pitcher. The pitcher made no mistakes during that part of the game. The
whole concept of a return code is to provide feedback on an operation. Imagine, for a
moment, that you are an officer in the Navy and you tell an enlisted sailor to swab the
deck. After you issue the order, you will be listening for the return code. In this case, the
return code would be, “Aye, aye, sir,” which in “sailor speak” means, “I understand and
will carry out the order.”

Capturing the Return Code
The return codes for most WMI methods can be found in the Platform software development
kit (SDK). Although at first glance the SDK seems to cater to developers, it also contains a
wealth of information for network administrators, help desk technicians, and consultants
who might want to learn more about scripting in general or WMI specifically. In Lab 1, you
download and install the SDK and explore the features of this comprehensive tool.

Table 1-1 lists the return codes from calling the startService method. A return code of 14 means
the service is disabled, and, therefore, the script, as listed earlier, will fail. In Lab 4 (in Chapter 2),
you modify this script to include additional logic to avoid a status of 14 in the return code. If
you have not captured this information earlier, you will find it difficult to know what the prob
lem is.

Table 1-1 Return Codes from the StartService Method of Win32_Service

Return Code Description

0 Success

1 Not supported

2 Access denied

3 Dependent services running

4 Invalid service control

5 Service cannot accept control

6 Service not active

Chapter 1: Introducing WMI 9
Table 1-1 Return Codes from the StartService Method of Win32_Service

Return Code Description

7 Service request timeout

8 Unknown failure

9 Path not found

10 Service already running

11 Service database locked

12 Service dependency deleted

13 Service dependency failure

14 Service disabled

15 Service logon failure

16 Service marked for deletion

17 Service no thread

18 Status circular dependency

19 Status duplicate name

20 Status invalid name

21 Status invalid parameter

22 Status invalid service account

23 Status service exists

24 Service already paused

Using WMI as a Tool
As a tool, WMI has a number of parts, including management pieces, infrastructure pieces,
security pieces, and consumer pieces. We examine the infrastructure pieces in Chapter 14
when we talk about troubleshooting. We talk about the security aspect when we look at secu
rity in Chapter 13. We have already been working with the consumer pieces—scripts, in this
case. For now, let’s look at the management pieces. The WMI Control console shown in Figure
1-2 is available when you add the WMI Control snap-in to a custom Microsoft Management
Console (MMC). The WMI Control console provides you with access to important informa
tion such as the location of the WBEM repository and the version number of WMI running on
the computer. This console enables you to target other computers and even to specify creden
tials for the connection. These two important features are not available when you access the
tool from the Computer Management console Services And Applications node, which is per
manently connected to the local machine with logged-on user credentials.

10 Part I: Getting Started with WMI
Figure 1-2 The WMI Control Properties dialog box, accessible from the WMI Control console

To add the WMI Control console to a custom MMC:

1.	 Click Start, click Run, and then type mmc in the Open box of the Run dialog box.
Click OK.

2. On the custom console’s (Console1) File menu, select Add/Remove Snap-In.

3. In the Add/Remove Snap-In dialog box, click Add.

4.	 In the Add Standalone Snap-In dialog box, select WMI Control (bottom of the list), and
then click Add.

5.	 In the Change Managed Computer dialog box, select either Local Computer or Another
Computer. If you choose Another Computer, you are given the opportunity to change
the connection account.

6. Click Finish, click Close, and then click OK.

Implementing Microsoft WBEM
In some respects, WMI could be viewed as the Microsoft implementation of WBEM. If you
know what WBEM is, this might be exciting. Perhaps a brief history lesson might be in order.
In the early 1990s, a group called the Desktop Management Task Force (DMTF) got together
to develop standards for managing desktop computers. This proved to be a real challenge
because there were hundreds of different kinds of desktop computers with thousands of dif
ferent types of components, all of which were manufactured in a very cost-sensitive, competi
tive industry. Eventually, it seemed that the industry was changing faster than the task force

Chapter 1: Introducing WMI 11
could even get proposals written (not to mention adopted), so the group decided to change its
name to Distributed Management Task Force—and because it is a not-for-profit group, it was
fortunate to be able to keep the same stationery, envelopes, T-shirts, coffee cups, and Web site
by using the same acronym. The DMTF has created some pretty cool stuff, some of which is
germane to this discussion:

■	 Desktop Management Interface (DMI) A framework for tracking and managing
desktop computers and laptop devices

■ Web-Based Enterprise Management (WBEM) The basis for WMI

■	 Common Information Model (CIM) Vendor-neutral description of network equip
ment and environment. The CIM is famous for the schema that is used in WMI

You will never be asked what DMI stands for; neither do you really need to know what WBEM
is or how the CIM is related. However, I mention these because you might want to visit the
DMTF Web site, http://www.dmtf.org/home, which links to many very good white papers, and
you will see these names appearing from time to time. If you see DMI, WBEM, or CIM, you can
simply think to yourself “WMI” and you will be fine.

Describing Objects Using the CIM
The CIM is a way of describing the various components that make up a computer, network, or
software package. In other words, the CIM is an abstract way to obtain and to process infor
mation. The two main parts of the CIM are the specification and the schema. The specification
portion of the CIM describes how the data will be gathered and transported. In addition, it
details the CIM metadata (metadata is data about data), which is called MetaSchema.

The existence of MetaSchema implies the existence of a schema. The CIM schema is com
posed of the following essential elements:

■ Namespaces

■ Providers

■ Classes

The namespaces are the way in which the data is stored on the computer. CIM schema
namespaces are hierarchical in much the same way as the Domain Name System (DNS) is a
hierarchical namespace: the names have an additive property about them—and we have the
tendency to move from the specific to the general or from the general to the specific. Data is
stored in a repository that facilitates both storage and retrieval of the appropriate data. The
hierarchical nature of namespaces enables us to navigate easily and to obtain the appropriate
classes.

12 Part I: Getting Started with WMI
Working with Namespaces

Namespaces are used to organize the information with which you will be working. It is impor
tant to know where certain information is kept in the schema because you are not allowed to
do a query between namespaces. For example, if you want to retrieve information about pro
cesses on a machine, you would use the Win32_Process class. To use this particular WMI class,
you must make a connection to the root\cimv2 namespace. A script called Win32_Process.vbs
in the cimv2 folder on the accompanying CD lists all the processes and all the properties asso
ciated with the processes. A more practical approach, however, is to use the script called List-
ProcessesByName.vbs. ListProcessesByName.vbs is a great tool to use when troubleshooting
startup problems on a computer. I used it when I got a new laptop to determine why the com
puter was running 50 different processes when my old machine required 32 processes to do
essentially the same thing. I still use this script prior to installing new software. When you run
this script, you will find that a file called logfile.txt is created on your desktop.

ListProcessesByName.vbs
strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select name, ExecutablePath from win32_process"

i = 0

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

message = message & vbcrlf & objItem.name & vbtab & objItem.ExecutablePath

i = i+1 ' counts the number of processes that are running

Next

SubSpecialFolder

SubLogFile

' subs are below

Sub SubSpecialFolder

Dim objShell

Set objShell = CreateObject ("wscript.shell")

strFolder = objshell.SpecialFolders("Desktop")

End Sub

Sub SubLogFile

Dim objFSO ' holds connection to file system object

Dim objFile ' holds hook to the file to be used

Dim LogFile

Dim m1 ' holds message 1

m1 = "there are " & i & " processes running "

Const ForWriting = 2

Const ForAppending = 8

LogFile = strFolder & "\logFile.txt"

Chapter 1: Introducing WMI 13
Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)

objFile.WriteBlankLines(1)

objFile.Writeline " ** " & m1 & Now & message

objFile.Close

Else

Set objFile = objFSO.CreateTextFile(LogFile)

objfile.writeline " ** " & m1 & Now & message

objFile.Close

End If

End sub

You can use VBScript to obtain information about WMI. The following script, ListWMI-
Namespace.vbs, initiates a query that will list all the namespaces that currently reside on the
computer. Using this information, you can get a good idea of which groups of information you
can work with and which you can view.

ListWMINamespace.vbs
strComputer = "."

Set objSWbemServices = GetObject("winmgmts:\\" & strComputer & "\root")

Set colNameSpaces = objSwbemServices.InstancesOf("__NAMESPACE")

For Each objNameSpace In colNameSpaces

Wscript.Echo objNameSpace.Name

Next

The ListWMINamespace.vbs script makes a connection into the root namespace on the com
puter, and then uses the instancesOf method to list all the namespaces inside the current
namespace (which is the root namespace). When you run the script, you receive output simi
lar to the following:

SECURITY

CCM

RSOP

Cli

SecurityCenter

WMI

CIMV2

MSAPPS10

Policy

SmsDm

Microsoft

DEFAULT

directory

subscription

MSAPPS11

14 Part I: Getting Started with WMI
The namespaces are all off of the root namespace. That is, they are child namespaces just off of
the root namespace. If you want to find out which namespaces are under each of these
namespaces, you must connect to each namespace and then issue the same query. This pro
cess is known as a recursive query and is demonstrated in the following script.

recursiveListWmiNameSpace.vbs
strComputer = "."

Call EnumNameSpaces("root")

Sub EnumNameSpaces(strNameSpace)

Wscript.Echo strNameSpace

Set objSWbemServices = _

GetObject("winmgmts:\\" & strComputer & "\" & strNameSpace)

Set colNameSpaces = objSWbemServices.InstancesOf("__NAMESPACE")

For Each objNameSpace In colNameSpaces

Call EnumNameSpaces(strNameSpace & "\" & objNameSpace.Name)

Next

End Sub

The results of running the recursive namespace script can be somewhat surprising. The fol
lowing output is from a workstation running Microsoft Windows XP. You might see a couple
of things normally, for instance, in the root\CCM namespace. This namespace is for the client
connection manager software used by SMS 2003. Evidently, SMS is using WMI to assist in
tracking the location of servers, messaging, and the policy that is created to determine how to
manage the desktop computer. Another interesting namespace is the root\SecurityCenter
namespace. As you might recall, the SecurityCenter was a feature introduced in Windows XP
Service Pack 2. Any manipulation of settings or queries for information revealed by the Secu
rityCenter must take place inside this namespace.

The next level of inquiry might be to look for providers and classes that reside inside the
namespace. The result of running this script is a list that looks similar to the following:

root

root\SECURITY

root\CCM

root\CCM\VulnerabilityAssessment

root\CCM\Events

root\CCM\invagt

root\CCM\SoftMgmtAgent

root\CCM\LocationServices

root\CCM\DataTransferService

root\CCM\Messaging

root\CCM\Policy

root\CCM\Policy\S_1_5_21_124525095_708259637_1543119021_179756

root\CCM\Policy\S_1_5_21_124525095_708259637_1543119021_179756\RequestedConfig

root\CCM\Policy\S_1_5_21_124525095_708259637_1543119021_179756\ActualConfig

root\CCM\Policy\S_1_5_21_2127521184_1604012920_1887927527_1098747

root\CCM\Policy\S_1_5_21_2127521184_1604012920_1887927527_1098747\RequestedConfig

root\CCM\Policy\S_1_5_21_2127521184_1604012920_1887927527_1098747\ActualConfig

root\CCM\Policy\DefaultUser

root\CCM\Policy\DefaultUser\RequestedConfig

Chapter 1: Introducing WMI 15
root\CCM\Policy\DefaultUser\ActualConfig

root\CCM\Policy\Machine

root\CCM\Policy\Machine\RequestedConfig

root\CCM\Policy\Machine\ActualConfig

root\CCM\Policy\S_1_5_21_1960408961_484763869_854245398_500

root\CCM\Policy\S_1_5_21_1960408961_484763869_854245398_500\RequestedConfig

root\CCM\Policy\S_1_5_21_1960408961_484763869_854245398_500\ActualConfig

root\CCM\Policy\S_1_5_21_3410805860_1789667759_1435136519_500

root\CCM\Policy\S_1_5_21_3410805860_1789667759_1435136519_500\RequestedConfig

root\CCM\Policy\S_1_5_21_3410805860_1789667759_1435136519_500\ActualConfig

root\CCM\Policy\DefaultMachine

root\CCM\Policy\DefaultMachine\RequestedConfig

root\CCM\Policy\DefaultMachine\ActualConfig

root\CCM\SoftwareMeteringAgent

root\CCM\ContentTransferManager

root\CCM\Scheduler

root\RSOP

root\RSOP\User

root\RSOP\User\S_1_5_21_124525095_708259637_1543119021_179756

root\RSOP\User\S_1_5_21_2127521184_1604012920_1887927527_1098747

root\RSOP\User\ms_409

root\RSOP\User\S_1_5_21_1960408961_484763869_854245398_500

root\RSOP\User\S_1_5_21_1960408961_484763869_854245398_1004

root\RSOP\User\S_1_5_21_3410805860_1789667759_1435136519_500

root\RSOP\Computer

root\RSOP\Computer\ms_409

root\Cli

root\SecurityCenter

root\WMI

root\WMI\ms_409

root\CIMV2

root\CIMV2\ms_409

root\CIMV2\SMSSWUTemp

root\CIMV2\SMS

root\CIMV2\Applications

root\CIMV2\Applications\MicrosoftACT

root\CIMV2\Applications\MicrosoftIE

root\MSAPPS10

root\Policy

root\Policy\ms_409

root\SmsDm

root\Microsoft

root\Microsoft\HomeNet

root\DEFAULT

root\DEFAULT\ms_409

root\directory

root\directory\LDAP

root\directory\LDAP\ms_409

root\subscription

root\subscription\ms_409

root\MSAPPS11

16 Part I: Getting Started with WMI
Working with Providers

Providers are used to request information from WMI. They also can send instructions to WMI.
From a direct scripting standpoint, you will never use the name of a provider in a WMI script.
But as a network administrator or consultant, it is important to know about providers because
they provide classes.

What Do Providers Provide? As a scripter, you will never actually use the name of a
provider in a VBScript. However, it is important to be aware of which providers are installed on
your computer because they provide the classes. Through the classes, you have access to prop
erties and methods. Although you might never know which specific provider you are using,
you will in fact be using a provider when you use properties and methods. By the same token,
if a provider is not installed, you are not able to use the class it supplies.

As you explore the namespaces, it makes sense to use WMI to tell you something about the
providers that reside in the namespaces. You can use the script listWMIproviders.vbs to iter
ate the providers in a particular namespace.

listWMIproviders.vbs
strComputer = "."

wmiNS = "\root\wmi"

Set objSWbemServices = _

GetObject ("winmgmts:\\" & strComputer & wmiNS)

Set colWin32Providers = objSWbemServices.InstancesOf("__Win32Provider")

For Each objWin32Provider In colWin32Providers

Wscript.Echo objWin32Provider.Name Next

The list of providers can give you insight into what you can use the namespace for in your
script. The list of providers in the root\wmi namespace is as follows:

WMIEventProv

HiPerfCooker_v1

WMIProv EventTraceProv

SmonlogProv

If the list of providers is less than illuminating, you can always look up the provider in the Plat-
form SDK. For instance, the SDK indicates that HiPerfCooker_v1 is used to provide calculated
performance counter data (this is where the term cooked, as opposed to raw, originates). An
example of such cooked data is the percentage of time that a hard disk drive spends on write

Chapter 1: Introducing WMI 17
operations. To calculate this data, HiPerfCooker must determine how long the drive was in
operation, how long the drive spent reading, and how long it spent writing. Based on this
information, HiPerfCooker can give you a percentage of writes over a period of time. HiPerf-
Cooker requires three raw data points to produce one cooked data point. We look at this pro
vider more closely in Chapter 12.

Understanding Classes

Classes are the way that the CIM describes things. To describe a mouse (not the furry kind),
you would list its features perhaps in terms of the number of buttons it has, whether it is for
left-handed or right-handed users, whether it uses a PS/2 or universal serial bus (USB) inter-
face, and so on. These are characteristics that typify a mouse used on computers running the
Windows operating system, not other types of computers, so calling the whole class mouse
might be a little too specific. Perhaps we could use a more generic term such as pointing device
that includes features of other input devices as well. The DMTF did just that by creating a class
called CIM_pointingDevice. If you look up this class in the Platform SDK, you will see that it
has the following properties:

Availability

Caption

ConfigManagerErrorCode

ConfigManagerUserConfig

CreationClassName

Description

DeviceID

ErrorCleared

ErrorDescription

Handedness

InstallDate

IsLocked

LastErrorCode

Name

NumberOfButtons

PNPDeviceID

PointingType

PowerManagementCapabilities

PowerManagementSupported

Resolution

Status

StatusInfo

SystemCreationClassName

SystemName

The listing of pointing device properties is relatively generic. CIM_PointingDevice inherits from
a class that is called CIM_UserDevice. In CIM terminology, this means that CIM_userDevice is

18 Part I: Getting Started with WMI
a superclass to CIM_PointingDevice. The following properties were inherited from
CIM_UserDevice:

Availability

Caption

ConfigManagerErrorCode

ConfigManagerUserConfig

CreationClassName

Description

DeviceID

ErrorCleared

ErrorDescription

InstallDate

IsLocked

LastErrorCode

Name

PNPDeviceID

PowerManagementCapabilities

PowerManagementSupported

Status

StatusInfo

SystemCreationClassName

SystemName

To complicate things a bit more, we customize the CIM_PointingDevice class so that it is more
applicable to a Windows environment. In this regard, we call it Win32_PointingDevice, which
has the following properties:

Availability

Caption

ConfigManagerErrorCode

ConfigManagerUserConfig

CreationClassName

Description

DeviceID

DeviceInterface

DoubleSpeedThreshold

ErrorCleared

ErrorDescription

Handedness

HardwareType

InfFileName

InfSection

InstallDate

IsLocked

LastErrorCode

Manufacturer

Name

NumberOfButtons

PNPDeviceID

PointingType

PowerManagementCapabilities

PowerManagementSupported

QuadSpeedThreshold

Chapter 1: Introducing WMI 19
Resolution

SampleRate

Status

StatusInfo

Synch

SystemCreationClassName

SystemName

As you can see, the Win32_PointingDevice class has been customized and adapted to serve the
needs of Windows environments more specifically. The Windows pointing device is a very
rich implementation—adding nine additional properties—and therefore must have customized
properties that are more germane to a Windows environment. If you wish to explore this evo
lution of class properties, I have summarized them in a Microsoft Excel spreadsheet called
classcomparison.xls, which is included on the accompanying CD.

How does Microsoft extend the CIM_PointingDevice class? There are two answers. The technical
answer is that the new class inherits all the properties of the CIM_PointingDevice class and then
adds additional properties to support the richness of Windows-type pointing devices. The less
technical answer is that you can simply create a new class called Win32_PointingDevice. This
brings up a good point: both classes are in the root\cimv2 namespace. Given the choice
between two classes, one called CIM_ something, and one called Win32_ something, I always
prefer to use classes with the Win32_ prefix because they have been customized for the Win
dows environment. Remember that the DMTF was technology neutral and, as such, devel
oped a very generic CIM schema. We leverage this schema and call it WMI.

Implementing Programming Interfaces
The Microsoft implementation of WMI provides the following application programming inter-
faces (APIs):

■ COM API Provides support for WMI information through C++ development.

■	 Scripting API Provides support for WMI information through VBScript, Microsoft
Visual Basic, Microsoft JScript, and other languages that support Microsoft ActiveX.

■	 WMI ADSI extension No longer available in Microsoft Windows Server 2003. Pro
vides a way to manage computer objects returned from Active Directory directory ser
vice through WMI. The preferred way to do this in Windows Server 2003 is to use Active
Directory Service Interfaces (ADSI).

■	 WMI ODBC adapter Offers support for Open Database Connectivity (ODBC) appli
cations to access the repository directly without going through the Component Object
Model (COM) or ActiveX. This is not installed in Windows Server 2003, but is included
in Windows XP, Microsoft Windows 2000, and even Microsoft Windows NT 4.0 with
Service Pack 4 (SP4). An alternative way to do this in Windows Server 2003 is to use
Microsoft Data Access Components (MDAC).

20 Part I: Getting Started with WMI
Using the WMI Architecture
The WMI architecture is the way everything is put together. Essentially, three pieces make up
the WMI cosmos. As shown in Figure 1-3, these pieces work together to expose the WMI
information to various applications, scripts, and programs. The management application talks
to WMI through the different interfaces mentioned earlier. Remember, the application can be
anything from SMS to a simple VBScript. The interface then retrieves the data from a variety of
sources such as the registry or hardware. WMI stores the data using the CIM.

Infrastructure

Repository

Router
Hard Drive
Mouse
Video Card
Processor
PCI Bus
Sound Card
Operating System
Applications
Hot Fixes

WMI Service

WMI Provider

Managed Object

Applications

Figure 1-3 Putting together applications, providers, and the WBEM repository using the WMI
architecture

Using Managed Objects and Providers
Managed objects are not really anything special; they are simply objects about which you can
obtain information. In some instances, they are not really objects at all, but, rather, applica
tions. The following types of objects can be managed using WMI providers:

■	 Computer system hardware Examples include mouse, hard disk, memory, video
card, keyboard

■ Operating system Examples include the desktop, drivers, COM, registry, processes

■ Installed applications Examples include Microsoft Office

■ WMI service management Examples include WMI settings

■ Performance counters Examples include formatted performance counters

Chapter 1: Introducing WMI 21
Keep two things in mind regarding providers and objects. First, without a provider, you can-
not access the properties of classes. In fact, without a provider, the class it supplies is either
nonexistent or is inaccessible. Providers provide classes. In many respects it really is that sim
ple. As mentioned earlier, you do not directly use a provider; rather, you use the provider indi
rectly through the supplied classes. At times, data is available in different formats, so the
advantage of using a class that is supported by one of the special providers is that they make
the data easier to consume. This is the case when you read performance data, as discussed ear
lier when I mentioned raw and cooked data. In other cases, the provider brings new function
ality that otherwise is not available. The following sections discuss which providers are
installed on a server that runs the Windows operating system.

WMI Infrastructure
The WMI infrastructure is part of the Windows operating system. It moves and stores the
information about managed objects. Following are the two components of the WMI infra
structure:

■	 Windows Management Instrumentation service Acts as the intermediary between
providers, applications, and the repository.

■	 WMI repository Stores information from providers and supplies data in response to
queries. This is also known as the WBEM repository or, simply, the repository.

The Windows Management Instrumentation service can locate information and directs que
ries appropriately because each provider installed on the computer registers its location with
the service. In addition, the provider also tells the management service about any additional
functionality it can support, such as data modification or deletion. The Windows Manage
ment Instrumentation service also logs errors to the event logs. The Windows Management
Instrumentation service provides the following additional functions:

■	 Event notification support An event is something interesting that happened, such as
a service starting or stopping or a file being created in a folder. Events are covered in
detail in Chapter 5.

■	 Query language support A query is a request for specific information; for example,
how many disk drives are installed on the computer? The language that is used to sub
mit these queries is called WMI Query Language (WQL), which is a subset of SQL.
WQL is covered in detail in Chapters 3 and 4.

■	 Security support WMI provides security support by identifying the user and imper
sonating that user. The provider can return information the user is allowed to see. The
WMI infrastructure also provides security at the namespace level. A namespace is a log
ical grouping of classes and instances as discussed earlier. Security is discussed in more
detail in Chapter 13.

22 Part I: Getting Started with WMI
■	 Logging support WMI and the providers can create detailed tracing and error mes
sage files. This information can be valuable from a troubleshooting perspective. You can
use the WMI Management console to configure this logging level. This is discussed in
more detail in Chapter 14.

WMI Applications

WMI management applications talk to the WMI infrastructure. An application can simply
submit a query to WMI to retrieve information such as how many disk drives are installed on
the computer, or it can tell WMI to send an instruction to a managed device, such as an
instruction for the device to tell how much free disk space is available on drive C. Most of the
time, the management applications simply access information that is already stored in the
repository.

WBEM Repository

The WBEM repository (or WMI repository) is essentially a database that contains stored data
about your system. When the WMI service starts, it populates the WBEM repository with lots
of data about your system. In some respects, you can think of the WBEM repository as a SQL
server and each namespace as a database that is running on the SQL server. To continue the
analogy, the classes in each namespace would be like tables, and the properties would be
fields in the tables. The methods would be triggers or stored procedures resident on the
tables.

Location

The location of the WBEM repository is generally the same in all newer versions of the Win
dows operating system (Windows 2000, Windows XP, and Windows Server 2003). It can be
found at %SystemRoot%\system32\wbem\Repository. As shown in Figure 1-4, the WBEM
folder contains more than just the repository. It is also where the backup folders, the logs, and
much more are stored. Accessing this folder is the key to managing WMI.

Chapter 1: Introducing WMI 23
Figure 1-4 The WBEM folder

Retrieving from the Repository

When a WMI application receives a query, it submits the request to the appropriate provider.
The provider must, of course, reside in the same namespace as the request. Once the WMI ser
vice receives the request, it will hand off the query to the appropriate provider.

Handing Off to a Provider

The provider receives the request, acts on the query as appropriate, and hands off as required.
In this manner, it is an intermediary between the Common Information Model Object Man
ager (CIMOM) and the resource. The provider then requests the information from the
resource. It acts like a concierge on behalf of the requesting application (which can be a simple
VBScript) because it handles all the details of the query and then bundles the information and
returns it to the requesting application. We cover this in more detail in Chapter 2.

24 Part I: Getting Started with WMI
Summary
In this chapter, we looked at the fundamentals of WMI. We examined classes, properties, pro
viders, and namespaces and discussed the roles they perform in the WMI architecture. We
looked at the WMI repository (also called the WBEM repository) and reviewed how applica
tions can be written to interact with this database of system information. Finally, we examined
how the handoff to the providers really works.

Quiz Yourself
Q: What is WMI?

A: WMI is the Microsoft implementation of WBEM, an industry-standard set of manage
ment and Internet-standard technologies.

Q: What does CIM stand for?

A: CIM stands for Common Information Model.

Q: How is the CIM used?

A: CIM is used to describe objects used within WMI. These form the basis of the CIM
schema, which is used as the foundation for Windows-specific classes.

Q: What is the difference between a property and a method?

A: A property is used to describe something; for example, how much free space is on a
hard disk. A method actually does something; for example, it formats the hard disk
drive.

Q: Where is the WBEM repository located?

A: The WBEM repository is located in the %SystemRoot%\system32\wbem\Repository
directory by default.

On Your Own

Lab 1 Installing and Configuring the Core Platform SDK

In this lab, you will download and install the Platform software development kit (SDK), along
with the WMI Redistributable Components version 1.0. Feel free to take a look around and
become familiar with the SDK. The SDK is covered in more detail in Lab 3, where you will
practice configuring and using the various features of the SDK.

1.	 Open your Web browser, and navigate to http://www.microsoft.com/downloads/
details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-40C0EC4F68E5&displaylang=en.

2. On the right-hand side of the screen, click Download Files Below.

Chapter 1: Introducing WMI 25
3.	 Click PSDK-x86.exe. Depending on the version of the Windows operating system you
are running and its security setting, you might be prompted multiple times by a security
warning dialog box. Click the appropriate options to run Setup Wizard.

4.	 Walk through the pages of the Setup Wizard. (This takes about 15 minutes using a high-
speed Internet connection.)

5.	 Once you have completed the installation of the Platform SDK, return to the download
page and download and install WMI Redistributable Components version 1.0.

Lab 2 Online Install (Optional)

If you have not completed Lab 1, this lab is for information only. If you are not going to install
the Platform SDK on more than one computer, doing an online install makes sense. If you
need to install the SDK on multiple computers, or if Internet connectivity is unreliable or con-
strained, it makes sense to download the CAB files. Do not try to install the SDK on a com
puter that already has the Platform SDK installed on it.

1.	 Open your browser and navigate to http://www.microsoft.com/downloads/
details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-40C0EC4F68E5&displaylang=en.

2.	 About halfway down the screen, under Related Downloads, choose Windows Server
2003 SP1 Platform SDK Full Download. The Windows Server 2003 SP1 Platform SDK
Full Download page appears. Toward the bottom of the screen, under Files In This
Download, are 16 CAB files and 1 extraction utility file. Download all 17 files and save
them in a temporary directory.

3.	 Once the downloads have completed, open a CMD prompt and change to the tempo
rary directory containing the files downloaded in step 3 from Lab 1.

4.	 Run the executable file and specify another temporary directory that will contain the
extracted CAB files. If you saved the downloaded CAB files in the c:\TEMP directory
and you want to extract the CAB files to the c:\TEMPSDK directory, the command line
would look like the following:

C:\TEMP> PSDK-FULL.exe c:\TEMPSDK

5. Run Setup.exe from the c:\TEMPSDK directory.

6. Walk through the Setup Wizard.

7.	 Delete the temporary files as desired. You might want to copy the extracted files from
the TEMPSDK directory to either a network share or a CD-ROM.

8.	 Once you have completed the installation of the core SDK, go back to the main page and
download the WMI SDK. Click WMI SDK.

9.	 Click Install This SDK. The WMI SDK is 6.7 megabytes (MB) and requires 15.4 MB of
disk space.

10. Walk through the Setup Wizard.

26 Part I: Getting Started with WMI
Lab 3 Navigating the SDK

In this lab, you will learn the basics of navigating your way around the Platform SDK docu
mentation. Taking a few minutes to learn how to navigate the documentation properly will
assist you in quickly finding the answers you’re looking for when you need them.

1.	 Click Start, and then point to All Programs and Microsoft Platform SDK For Windows
Server 2003 SP1. Click Platform SDK Documentation.

2.	 When launched, you are presented with two main windows: the Document window
(located on the right) and the Navigation pane (located on the left).

3.	 Click the tabs at the bottom of the Navigation pane to get an idea of what each contains.
The Search tab is the one you will use most often.

4.	 Click the Index tab. Notice there is an X in the upper-right corner. Click the X to close
the Index pane. Close the Favorites pane as well.

5.	 To add the Favorites pane back to the pane view, on the View menu, choose Navigation,
and then click Favorites.

6.	 Because the Platform SDK uses Microsoft Internet Explorer to display content, the
Favorites are integrated with Internet Explorer. To separate the SDK articles from the
rest of Internet Explorer Favorites, create a special folder. Open Internet Explorer; on
the Favorites menu, choose Organize Favorites; and then select Create Folder. Name the
folder SDK Articles. (You can also do this from the Favorites tab inside the SDK.) Click
the Organize Favorites button.

7. Close Internet Explorer.

8.	 In the Search pane, in the Look For drop-down list, type WMI providers, and then click
Search. In the Search Results pane, the bar will indicate the number of topics found,
organized by rank.

9. Click the Location bar, and sort the results by book.

10. Above the document window, click the double-headed green arrow on the Standard
toolbar. This brings the Contents pane to the foreground and synchronizes contents
with the article currently in the document.

11. Each location in the Search Results pane corresponds to a book in the SDK. Scroll down
the list of locations in the Search Results pane until you find a book called Windows
Management Instrumentation SDK. This book was installed when you downloaded the
WMI SDK.

12. Double-click the article titled “Managed Objects and Providers.” It is ranked 14th and is
the 7th article in the WMI SDK location.

13. Once the “Managed Objects and Providers” article appears in the document window,
synchronize the contents with the double-headed green arrow. On the left side of the

Chapter 1: Introducing WMI 27
Contents pane, you will see the article is located in the chapter called “WMI Architec
ture.”

14. Click the “WMI Architecture” chapter and, in the article that appears, you will see it
links to a book on WMI infrastructure and one on WMI management applications, as
well as the “Managed Objects and Providers” article.

15. Use the back arrow (green arrow on the Standard toolbar) to go back to the “Managed
Objects and Providers” article.

16. Click the Favorites tab, and then click the Add To Favorites button near the top of the
tab. The Add Favorite dialog box appears, giving you the opportunity to add the article
to the folder you created in step 6.

17. On the Standard toolbar, there is a text box that lists the topic’s path. Hover the mouse
over this, and the ScreenTip indicates the Uniform Resource Locator (URL). Right-click
the white box and select Copy from the shortcut menu. (This looks weird because you
have not selected anything yet, but don’t let this confuse you.)

18. Open Notepad and paste the URL you just copied. It will look like the following:

ms-help://MS.PSDKSVR2003SP1.1033/wmisdk/wmi/managed_objects_and_providers.htm

19. Now you are going to play with the URL you have on the Clipboard. Close the SDK.

20. Open the Platform SDK. Move the mouse over the white URL text box. Notice the
pointer is an I-beam. Click in the middle of the box and it turns blue, indicating the box
is selected. Paste the URL into this text box and press ENTER. The “Managed Objects
and Providers” article appears.

21. Because this is simply a URL, you can paste it into Internet Explorer, the Open box in
the Run dialog box (click Run on the Start menu), or do other things you can do with
URLs.

22. On the CD that accompanies this book, there is a folder named “Chapter 1 Supplemen
tal Material”; open the folder and peruse the SDK articles listed there. The file uses the
URL properties discovered in step 18. Close your browser when you are finished review
ing the articles.

23. Open the Lab1Starter.HTML file in Notepad. Examine the content of the file. Save the
file with a new name (StudentNameLab1.html) in your workspace directory.

24. Edit the second line of code, and then save the file. This line controls the title that
appears at the top of the browser. Change the message to read Lab One. This is illus
trated in the following code:

<html><head><title>

Lab One SDK References

</title></head>

28 Part I: Getting Started with WMI
25. The <h1> tag controls the heading that appears at the top of the page. Change it to read
Lab One as well, as shown in the following line:

<h1>Lab One SDK References</h1>

26. Now add one additional reference article. Look up __namespace in the SDK. Copy the
URL location of the article that is called “__Namespace” (it should be the second article
returned in the Search Results pane).

27. On the next-to-last line of the file, type __Namespace as shown in the following line:

__Namespace

</pre></div><html>

28. Add a hyperlink to the namespace article. Open the tag with <a href=“ and then paste in
the URL you copied in step 26. Make sure you close the URL with a closing quotation
mark (”) and a right angle bracket (>). It will look like the following:

__Namespace

</pre></div><html>

29. After the angle bracket, paste the URL again. Close the tag with :

ms-help://

MS.PSDKSVR2003SP1.1033/wmisdk/wmi/__namespace.htm

30. If the line wrapping is too confusing, refer to the solution file or to the __win32Provider
line for a sample of what the line should look like.

31. Save the file and open it in Internet Explorer.

Chapter 2

Configuring WMI

Now that you have a common understanding of the fundamentals, you can learn how to fine-
tune Windows Management Instrumentation (WMI) so it serves the exact needs of your orga
nization. Whether you maintain a small workgroup of 10 computers or a large global network
composed of 10 forests, you will certainly want to configure specific settings. In this chapter,
I show you both the easy way and the hard way to do this—your perspective, of course, will be
based on your network configuration. For instance, a nice graphical user interface (GUI) util
ity is perfect for a small network but is a major roadblock when configuring thousands of com
puters.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ Elements of the basic WMI architecture

■ Function and role of the Web-Based Enterprise Management (WBEM) repository

■ Function and role of both the WMI providers and WMI objects

After you complete this chapter, you will be familiar with the following concepts:
■ How to configure logging for WMI

■ How to set the default namespace for WMI

■ How to back up the WBEM repository

■ How to restore the WBEM repository

■ How to configure credentials for remote WMI connections

■ How to configure service settings for the WMI service

■ How to configure service settings for the WINMGMT service

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter02 folder.
29

30 Part I: Getting Started with WMI
Understanding the WMI Control Snap-in
You can access the WMI Control snap-in in two ways. First, you can find it in the Computer
Management console and, from there, you can access the configuration of WMI on the local
computer. Second, you can add the WMI Control snap-in into a blank or custom Microsoft
Management Console (MMC) and this enables you to change the target machine and the cre
dentials used to make the connection into WMI. This dualistic approach can be disconcerting
for those administrators who expect to be able to redirect the WMI Control console to target
another computer because they are unable to access the Connect To Another Computer
option on the Action menu from within the Computer Management console, as they can
when they use the WMI Control snap-in. The Change Managed Computer dialog box, shown
in Figure 2-1, is available from within the WMI Control snap-in.

Figure 2-1 Targeting a remote computer with the WMI Control console

Configuring Logging
One of the most fundamental duties of a network administrator is configuring logging for a
variety of activities. For instance, Microsoft Exchange Server administrators are often told by
Microsoft Premier Support Services (PSS) to increase the amount of logging on a variety of
interfaces. This can be a useful recommendation for WMI administrators (if there could ever
be such a role). In this section, we examine the logging levels available as we explore the WMI
configuration tool.

One of the really cool features of WMI is its logging capabilities. As shown in Figure 2-2, three
levels of logging are available from the WMI Control tool. (As you will see later, these are the
same levels available through the registry as well.) The levels are Disabled, Errors Only, and
Verbose (Includes Extra Information For Microsoft Troubleshooting). Normally, you log
using the Errors Only level unless you are having problems that need the additional logging
supported by Verbose mode.

Chapter 2: Configuring WMI 31
Figure 2-2 Three levels of error logging from the WMI Control console

When you change the logging level, the change takes place immediately. This is useful because
you can avoid either cycling the service or rebooting the computer. It also enables you to
increase the amount of logging while troubleshooting a problem and, after the problem is
solved, you can reduce the logging level, all without interrupting services. Depending on the
problem that is detected, you will find a newly created log file called Winmgmt.log in the
%SystemRoot%\System32\WBEM\Logs directory. Diagnostic logging also is written in the
Wbemcore.log file.

Quick Check

Q: How can you configure the WMI logging level?

A: You use the Logging tab of the WMI Control console.

Q: What are the three levels of logging that can be configured in the WMI Control con-
sole?

A: The three levels of logging that can be configured in the WMI Control console are Dis
abled, Errors Only, and Verbose.

Q: What is one reason you might configure Verbose logging?

A: Verbose logging is normally configured to aid troubleshooting a problem that needs
diagnostic logging, such as in response to a PSS call.

WMI logging is dependent on the actual provider to supply the events and information to be
logged. Not all providers write the same kind of data to the same logs. Additionally, not all

32 Part I: Getting Started with WMI
WMI providers are configured through the MMC snap-in. The following providers do not
write to common WMI logs and they are not configurable through the MMC.

■ Event log provider

■ SNMP provider

■ View provider

■ Directory services provider

In addition to configuring the logging level, you can change the size of the log file by altering
the default 65,536-byte size, and you can change the location of the logs from the default
%SystemRoot%\\System32\WBEM\Logs location. As shown in Figure 2-2, the Logging tab
easily exposes these two values. However, you probably will not have a very good reason to
modify either value during normal operations. I recommend not moving the WMI logs from
their default location because some applications expect to find the logs there, and if you move
the logs, you would also have to reconfigure each application to access the new location. In
addition, other administrators who need to troubleshoot WMI usually expect the logs to be in
the default location as well.

If, however, you do decide to move the WMI log files to another location, keep in mind that
the change does not take place immediately. You must cycle the WMI service for the change to
take effect. If you do restart the WMI service, several dependencies could also be stopped and
restarted, such as the Microsoft Windows Security Center, the Windows Firewall/Internet
Connection Sharing (ICS), and, of course, the Systems Management Server (SMS) Agent Host.

When you make changes to these logging options through the GUI, the new values are writ-
ten to the registry. Changes are reflected in the following registry keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Logging

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Logging Directory

Backing Up the WMI Repository
“Oh, no! Not something else to back up,” you might exclaim. Ah, yes, my friend, the WMI
repository must be backed up on a regular basis. This is particularly important from a disaster
recovery standpoint. As discussed in Chapter 1, the WMI repository contains valuable data
about servers, workstations, and devices. To protect this information, you need to back it up
periodically.

As shown in Figure 2-3, the only configurable options available to the network administrator
are the location and the file name. Everything else is automatic and takes only a few seconds
to complete on an average server. By default, the WMI repository is no longer backed up auto
matically every 30 minutes on computers running Microsoft Windows XP and Windows

Chapter 2: Configuring WMI 33
Server 2003. So, you must back up the WMI repository if you customize it or if you install
software that creates its own custom classes or installs its own custom providers. This is a
change from earlier versions of WMI.

Figure 2-3 Specifying a name and location for WMI repository backup files

Restoring the WMI Repository
If you think backing up the WMI repository is easy, restoring it is even easier. Select the REC
file (WMI recovery file) in the Open dialog box, as shown in Figure 2-4. Recovery begins
immediately after you click Open. That’s it. There is no prompt asking, “Are you sure you want
to restore the WMI repository?” nor do you get “You are about to overwrite your current WMI
repository with a previous recovery file. All current data will be lost. Are you sure you wish to
continue?” No such warnings occur.

Figure 2-4 Restoring a WMI recovery file

34 Part I: Getting Started with WMI
Quick Check

Q: Where are the WMI log files stored?

A: The WMI log files can be found in the %SystemRoot%\System32\WBEM\Logs directory
by default.

Q: How often should you back up the WMI repository?

A: You should back up the WMI repository on an as-needed basis—specifically, prior to mak
ing any changes you might wish to back out of later.

Q: What file extension is used for WMI backup files?

A: The WMI backups are stored as REC files (for recovery, perhaps).

It simply restores the previous backup file (called a WMI recovery file). For this reason, it is
important that you do not restore a backup file that is very old because you could be restoring
out-of-date data. If this is the case, you might simply need to delete the WMI repository and
restart the WMI service, whereupon it will rebuild the repository with information stored in
the registry recovery key (for more information on this, please refer to Chapter 14).

As the WMI recovery operation is taking place, a dialog box appears that tells you the WMI
restore operation is in progress. To confirm the operation was successful, use the WMI Con
trol console to reconnect with WMI. After you click OK in the WMI Control dialog box shown
in Figure 2-5, close the WMI Control console dialog box, or else it will tell you that it is unable
to connect to WMI because the computer is busy. Although this might seem like an error, it is
not because the connection currently displayed is left over from the prerecovery WMI reposi
tory. (If you are unable to make a new connection at this point, however, you might have a
more serious problem. You should review the troubleshooting information in Chapter 14.)
Click Cancel, right-click the WMI Control node, and you will once again successfully connect.

Figure 2-5 WMI Control dialog box indicating the restore operation is in progress

Chapter 2: Configuring WMI 35
Why Back Up the WMI Repository?
Many network administrators never back up the WMI repository and, in fact, do not
even know there is functionality to do so. Several good reasons exist, however, for per-
forming a backup of the repository. For instance, if you are doing development work,
remember that you are installing providers, classes, and the like into the repository. As
you are developing, it makes sense to take snapshot backups along the way. They can be
fast and easy ways to return to a previous state without having to delete a corrupt repos
itory and rebuild it.

There are other reasons to back up the WMI repository as well. For instance, some appli
cations install custom providers in the WMI repository and fail to add themselves to the
Autorecover MOF registry key. To avoid manual recovery of the providers, you should
back up the WMI repository.

Changing the Target of Operations
One of the nice things about being able to add the WMI Control snap-in into an MMC is how

it enables you to change the target of operations. As shown in Figure 2-6, by using the snap-in

in a blank or custom console you can easily change the target computer. This gives the net-

work administrator a great deal of flexibility. For instance, you can connect to remote comput

ers and perform all the normal administration tasks for WMI, such as the following:

■ Configure logging level, log size, and log location

■ Back up the WMI repository

■ Restore the WMI repository

■ Configure the default WMI namespace

■ Configure namespace security

In addition, one of the easiest ways to check WMI security and health is simply to attempt to

make a connection with the WMI Control console. If it connects successfully, the problem lies

elsewhere. This is also a good way to test security because you have the capability to make the

connection with alternative credentials.

36 Part I: Getting Started with WMI
Figure 2-6 Using the MMC snap-in to connect to remote computers

Understanding Registry Settings
The WMI administrator needs to understand a number of registry settings, including settings
that control the behavior of the Windows Script Host (WSH) and those that control the exe
cution of WMI. You can define scripting configuration information in two locations: the cur-
rent user or the machine level. By default, the current user settings override the local machine
settings, but this is also configurable through the registry. The current user and machine level
settings can be found under the Settings keys in the following locations:

HKEY_CURRENT_USER\Software\Microsoft\Windows Script Host\Settings

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings

Enabled

The Enabled key is a Boolean value that turns WSH off or on. When set to 1 (enabled), the
scripts will run. When set to 0 (disabled), scripts will not run, and the error message shown
in Figure 2-7 appears. The Enabled key can be added to either the user or the machine level.
The locations of the Enabled key registry values are as follows:

HKEY_CURRENT_USER\Software\Microsoft\Windows Script Host\Settings\Enabled

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings\Enabled

Figure 2-7 An error message indicating that WSH has been disabled that appears when you
attempt to execute a script

Chapter 2: Configuring WMI 37
Several essential differences characterize the way Microsoft Windows 2000 implements this
value as compared to Windows XP and Windows Server 2003. First, the key is not present by
default in Windows XP and Windows Server 2003 as it is in Windows 2000. For all three plat-
forms, the default value is 1 (enabled). To turn off the capability to run scripts in Windows XP
and Windows Server 2003, you must add the Enabled value as a DWORD and set it equal to
0, as shown in Figure 2-8.

Figure 2-8 Turning off script processing in Windows XP and Windows Server 2003 by adding the
Enabled value and setting it equal to 0

LogSecurityFailures

After you turn off WSH, you probably want to know if someone is trying to run scripts on the
computer. In Windows 2000 and Windows XP prior to Service Pack 2 (SP2), you had to add
the LogSecurityFailures value to change the value from the default of 0. With LogSecurityFail
ures enabled, when a script fails to execute, Event ID 1000 is logged from WSH. In Windows
XP SP2, the default value is 1, which means security failures in script execution are written to
the system log. (You might expect failures to be written to the security log, but because they
originate from a system process, they go to the system log.) An example of the failure message
is shown in Figure 2-9.

Keep in mind that the LogSecurityFailures value is stored as a REG_SZ string value, and the
value enabling or disabling writing to the event log can be either 0 or 1, or true or false. Both
types of Boolean values are accepted for this key. The registry locations for this value when
specified for the user or machine level are as follows:

HKEY_CURRENT_USER\Software\Microsoft\Windows Script Host\Settings\LogSecurityFailures

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings\ LogSecurityFailures

38 Part I: Getting Started with WMI
Figure 2-9 Event log security failure message

LogSecuritySuccesses

If you want to audit the execution of scripts on a computer in the event log, you can enable the
LogSecuritySuccesses value. Just like the previous registry values examined in this section, it is
not available by default in Windows XP or Windows Server 2003 and must be added manu
ally. The default value for LogSecuritySuccesses is 0, which means it does not log the successful
execution of scripts on the platform. If you want to log successes, add the LogSecuritySuccesses
as a REG_SZ string value and set it equal to 1 or true. The registry locations for these values
are as follows:

HKEY_CURRENT_USER\Software\Microsoft\Windows Script Host\Settings\LogSecuritySuccesses

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings\LogSecuritySuccesses

On a practical level, I do not think turning on logging of successes enables you to gain much
useful information because the name of the script is not captured. An example of the informa
tion from Event ID 1001 is shown in Figure 2-10.

Chapter 2: Configuring WMI 39
Figure 2-10 Logging Event ID 1001 from WSH

Remote

Sometimes it is advantageous to start a script on a remote computer. By default, this cannot be
done in Windows XP and Windows Server 2003. Simply adding another value to the WSH
settings section of the registry can resolve this. The value you add is called Remote, and it is a
REG_SZ string value. As before, you might need to make the change in only one location,
depending on your configuration. If you change the setting at the user level, the registry value
looks like the following:

HKEY_CURRENT_USER\Software\Microsoft\Windows Script Host\Settings\Remote

If you need to control this setting at the machine level, add the Remote string value to the
HKEY_LOCAL_MACHINE (HKLM) hive as shown here:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings\Remote

Using the CIM Object Manager
In working with WMI, you need to be aware of the CIM Object Manager (CIMOM). As dis
cussed in Chapter 1, two basic types of classes are available in WMI. The first is a static class,
and, as you might guess, the second type is a dynamic class. For many operations, the
dynamic classes are the most interesting. However, at times you must work with static classes.
When you work with static classes, you are working with CIMOM.

40 Part I: Getting Started with WMI
CIMOM is a collection of application programming interfaces (APIs) that enables scripts and
other applications to work with the static classes found in the Common Information Model
(CIM) repository. Dynamic classes are generated by a provider, and they are not resident in
the CIM repository; however, it is still necessary to use CIMOM when dealing with dynamic
classes because the dynamic classes are based on the classes found in the repository. We dis
cuss these classes in more detail in Chapter 9.

In Windows 2000, Windows XP, and Windows Server 2003, the role of CIMOM is performed
by the WMI service. In Windows XP and Windows Server 2003, the WMI service, Win
mgmt.exe, runs inside a generic service host process called Svchost.exe, which you see when
you look at processes in Task Manager. In Windows 2000, the Winmgmt.exe service runs as
a stand-alone service.

CIMOM acts like a gatekeeper in that all requests for data flow through it. CIMOM receives a
request for information from your script or from an application and routes the request to the
appropriate provider or retrieves the information directly from the CIM repository.

How does CIMOM know where to route the requests? When a provider is installed, it registers
with CIMOM. This information is stored in the WMI repository. (Keep in mind that the CIM
repository and the WMI repository are exactly the same thing. Another term you might see is
WBEM repository, which is another name for the WMI repository. Three terms for the same
object—this ought to tell you it is important.) When CIMOM receives a request for informa
tion, it looks up the provider that is able to service the request. For example, the
Office_ExcelVersion.vbs script that follows retrieves important information about the version
of Microsoft Excel that is installed on the computer. When CIMOM receives the request for
the Excel version number, it needs to know which provider can supply this information. In
this instance, the MS_VIEW_INSTANCE_PROVIDER supplies the Office_ExcelVersion class.
The _VIEW_INSTANCE_PROVIDER is contained in Viewprov.dll. You will not have this class
or provider unless you have the SMS 2003 client installed. If the provider is not present, the
Office_ExcelVersion.vbs script will return a null value.

The Set objWMIService line in the script uses the GetObject method to make the connection
into WMI. It does so by using the winmgmts: moniker (this is covered in detail in Chapter 3).
Once you have established a connection into WMI, use the ExecQuery method to retrieve the
requested information from the Office_ExcelVersion class. ExecQuery returns a collection, so it
is necessary to use For Next Each to walk through the collection. The Office_ExcelVersion.vbs
script simply uses Wscript.echo to output the properties contained in the Office_ExcelVersion
class. A more interesting script might also return the name of the computer system and the
name of the currently logged on user, and then perhaps write the output to either an Excel
spreadsheet or to a database. Careful observation of the Office_ExcelVersion.vbs script reveals
that at no time does it use the name of the MS_VIEW_INSTANCE_PROVIDER provider. This
is not necessary (and would generate an error) because the CIMOM knows which providers
provide which classes.

Chapter 2: Configuring WMI 41
Office_ExcelVersion.vbs
strComputer = "." .

wmiNS = "\root\cimv2" .

wmiQuery = "Select * from Office_ExcelVersion" .

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS) .

Set colItems = objWMIService.ExecQuery(wmiQuery) .

For Each objItem in colItems .

wscript.echo "Build: " & objItem.Build .

wscript.echo "Name: " & objItem.Name .

wscript.echo "Path: " & objItem.Path .

wscript.echo "Version: " & objItem.Version .

wscript.echo " ".

next.

Once the information is collected, it is returned to the requesting application or script. Run
ning a script on the local computer is really exciting—but, for extreme excitement, you need to
talk to multiple machines. Network administrators rarely work with single computers, so the
question often comes up, “How do I run this script against multiple machines?” This is the
reason I defined the variable strComputer in the Office_ExcelVersion.vbs script. When you
assign the value “.” to the variable, you are telling Microsoft Visual Basic Scripting Edition
(VBScript) to operate against the local machine. If you want to connect to a remote computer,
you simply type in the name of a remote machine and (if you have permission, connectivity,
and a few other things) the script will operate against the remote computer. Keep in mind that
the script is actually running on the computer on which it is launched, but it targets the WMI
query against the computer defined with the variable strComputer. (Because strComputer is a
variable, I could have called it anything, but I like to call it strComputer, the variable used in
Microsoft Scriptomatic. Scriptomatic is covered in Chapter 14.) From this high-level overview,
you can see that the role of the provider is vital to the functionality (and extensibility) of WMI.
Let’s now examine the role of the provider in more detail.

Implementing Providers
Have you ever had the experience of being in a place where you did not speak the language?
Recently, I was in Lisbon teaching a VBScript class to some of our partners. I do not speak Por
tuguese, but luckily my colleague, Luis, does, so I made sure I did not stray too far from him.
Everyone in the class spoke English; however, a few times I had to call on Luis to explain in
Portuguese a particularly difficult topic. (Actually, the topic was easy, but my explanation was
making it difficult!) So, what does this have to do with WMI? In this story, Luis is the WMI
provider. WMI providers act as intermediaries between CIMOM and resources. In the story, I
am a resource, Luis is the provider, and the students in the class are the consumers (or appli
cations, whichever you prefer).

Providers make it easy to retrieve information from WMI. Providers provide classes. (We look
at classes in more detail later.) When you have a provider installed on your computer, it grants

42 Part I: Getting Started with WMI
additional functionality to the consumer application that uses its services. In this manner, pro
viders hide all the details involved in obtaining the information you need. You simply make
the appropriate call and retrieve the desired information. An example can help clarify this:
when I was in the Navy, we had an interface into the Engineering department called Damage
Control Central (DC Central). DC Central was available 24 hours a day and was a single
phone number we could call to learn the current status of all engineering functions, including
the status of all boilers, how much fresh water we had, how much electricity was being pro
duced, and so forth. If we did not have this interface, we would have had to make nearly a
dozen different phone calls to obtain the same information. In WMI terms, DC Central was
our engineering provider.

Each WMI provider installed on the server (or workstation) makes its presence known to
WMI by making certain entries in the registry on the computer. Knowing where these registry
entries reside is important for a couple of reasons. First, it makes it an easy task to retrieve
these settings from the registry. Additionally, being able to look up the registry entries can be
useful in a troubleshooting scenario. The registry settings are discussed in the section titled
“Automatically Recovering Providers.”

Configuring WMI Service Settings

When it comes to configuring WMI, you can use several settings. As discussed in the sidebar
titled “Why Back Up the WMI Repository?” one reason for backing up the WMI repository is
to be able to recover custom extensions that applications add to WMI.

Automatically Recovering Providers
The providers that are automatically backed up and automatically recovered are listed in the
following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Autorecover MOFs

By using one of the following four methods, each discussed in the following subsections, you

can ensure that the provider is automatically recovered in the event of a problem:

■ Upon installation, the application lists itself in the Autorecover MOF key.

■ You manually edit the Autorecover MOF key.

■ You add the #pragma autorecover tag to the Managed Object Format (MOF) file.

■ You use Mofcomp.exe with the –autorecover switch.

Initial Installation

On my system that runs Windows XP Service Pack 2, the following MOF files will be automat
ically recovered:

Chapter 2: Configuring WMI 43
C:\WINDOWS\system32\WBEM\cimwin32.mof

C:\WINDOWS\system32\WBEM\cimwin32.mfl

C:\WINDOWS\system32\WBEM\system.mof

C:\WINDOWS\system32\WBEM\wmipcima.mof

C:\WINDOWS\system32\WBEM\wmipcima.mfl

C:\WINDOWS\system32\WBEM\regevent.mof

C:\WINDOWS\system32\WBEM\regevent.mfl

C:\WINDOWS\system32\WBEM\ntevt.mof

C:\WINDOWS\system32\WBEM\ntevt.mfl

C:\WINDOWS\system32\WBEM\secrcw32.mof

C:\WINDOWS\system32\WBEM\secrcw32.mfl

C:\WINDOWS\system32\WBEM\dsprov.mof

C:\WINDOWS\system32\WBEM\dsprov.mfl

C:\WINDOWS\system32\WBEM\msi.mof

C:\WINDOWS\system32\WBEM\msi.mfl

C:\WINDOWS\system32\WBEM\policman.mof

C:\WINDOWS\system32\WBEM\policman.mfl

C:\WINDOWS\system32\WBEM\subscrpt.mof

C:\WINDOWS\system32\WBEM\wmi.mof

C:\WINDOWS\system32\WBEM\wmi.mfl

C:\WINDOWS\system32\WBEM\scm.mof

C:\WINDOWS\system32\WBEM\fevprov.mof

C:\WINDOWS\system32\WBEM\fevprov.mfl

C:\WINDOWS\system32\WBEM\wmitimep.mof

C:\WINDOWS\system32\WBEM\wmitimep.mfl

C:\WINDOWS\system32\WBEM\wmipdskq.mof

C:\WINDOWS\system32\WBEM\wmipdskq.mfl

C:\WINDOWS\system32\WBEM\wmipicmp.mof

C:\WINDOWS\system32\WBEM\wmipicmp.mfl

C:\WINDOWS\system32\WBEM\wmipiprt.mof

C:\WINDOWS\system32\WBEM\wmipiprt.mfl

C:\WINDOWS\system32\WBEM\wmipjobj.mof

C:\WINDOWS\system32\WBEM\wmipjobj.mfl

C:\WINDOWS\system32\WBEM\wmipsess.mof

C:\WINDOWS\system32\WBEM\wmipsess.mfl

C:\WINDOWS\system32\WBEM\krnlprov.mof

C:\WINDOWS\system32\WBEM\krnlprov.mfl

C:\WINDOWS\system32\WBEM\cli.mof

C:\WINDOWS\system32\WBEM\tscfgwmi.mof

C:\WINDOWS\system32\WBEM\tscfgwmi.mfl

C:\WINDOWS\system32\WBEM\licwmi.mof

C:\WINDOWS\system32\WBEM\licwmi.mfl

C:\WINDOWS\system32\WBEM\evntrprv.mof

C:\WINDOWS\system32\WBEM\hnetcfg.mof

C:\WINDOWS\system32\WBEM\sr.mof

C:\WINDOWS\system32\WBEM\CmdEvTgProv.mof

C:\WINDOWS\system32\WBEM\dgnet.mof

C:\WINDOWS\system32\WBEM\whqlprov.mof

C:\WINDOWS\system32\WBEM\ieinfo5.mof

C:\WINDOWS\SYSTEM32\WBEM\RSOP.MOF

C:\WINDOWS\SYSTEM32\WBEM\RSOP.MFL

C:\WINDOWS\SYSTEM32\WBEM\SCERSOP.MOF

C:\WINDOWS\SYSTEM32\WBEM\WSCENTER.MOF

C:\WINDOWS\MICROSOFT.NET\FRAMEWORK\V1.1.4322\ASPNET.MOF

C:\PROGRAM FILES\COMMON FILES\MICROSOFT SHARED\MSINFO\OINFOP11.MOF

44 Part I: Getting Started with WMI
C:\PROGRA~1\COMMON~1\MICROS~1\MSINFO\OINFOP11.MOF

C:\PROGRAM FILES\MICROSOFT ACT\ACTNAMESPACE.MOF

C:\PROGRAM FILES\MICROSOFT ACT\ACTCONTROLLER.MOF

C:\PROGRAM FILES\MICROSOFT ACT\ACTBROKER.MOF

C:\WINDOWS\system32\wbem\mof\good\msioff10.mof

C:\PROGRAM FILES\WMI TOOLS\EVIEWER.MOF

A review of the Autorecover information reveals that both MOF files and MFL files (language-
specific MOF files) will be reloaded into the WBEM repository at detection of a failure. MOF
files are used to define a provider to WMI and to specify which properties and methods are
available through that provider. These text files are compiled and their information is written
to the repository.

Manually Editing the Autorecover MOF Key

You might sometime install an application that supplies its own providers and the MOF files
are not added to the Autorecover MOF key in the registry. If this is the case, a WMI automatic
recovery operation will not load the MOF files into the repository. You can take several steps
to protect against this eventuality. Probably the easiest thing to do is to add the appropriate
MOF file to the Autorecover MOF registry key. This provides you with ease of recovery if the
WBEM repository becomes corrupt.

Adding the #pragma autorecover tag to the MOF File

Another way to recover automatically from a repository corruption is to actually edit the MOF
file that accompanies the offending application. This is an extremely easy operation because
the MOF file is plaintext and can be edited using Notepad.exe. To do this, add the following
command near the top of the MOF file:

#pragma autorecover

If you are wondering exactly where to place the #pragma autorecover command, examine the
following few lines from the Eviewer.mof file, which is the last Autorecover file listed earlier. In
this MOF file, the command is placed on the third line. In other files it might be on the second
line. It does not really matter as long as the command is close to the top of the file. For consis7
tency’s sake, I prefer to make it the second line of the file. We examine MOF files in more
detail in Chapter 13.

// Copyright (c) 1997-1999 Microsoft Corporation

#pragma namespace("\\root\\cimv2")

#pragma autorecover

The #pragma autorecover command tells WMI to write the name of the MOF file to the Autore
cover MOF registry key. This happens when the MOF file is compiled and placed in the repos7
itory.

Chapter 2: Configuring WMI 45
Using Mofcomp.exe

The fourth way to ensure automatic recovery of the MOF file is to use a special switch when
using the Mofcomp.exe utility. If you think, judging from the name, the Mofcomp.exe utility
might compile MOF files, you are very observant. That is exactly what the utility does. You
might need to use Mofcomp.exe on any of the following occasions:

■	 If you have written your own MOF file (don’t laugh, you will be doing this later—it is not
as hard as it sounds) and you want to actually use it, it needs to be compiled and placed
in the WMI repository.

■	 If you purchase an application, but the manufacturer does not by default enable instru7
mentation of the application.

■ If you need to recover a WMI provider that is not automatically recovered.

A lab in which you use the Mofcomp.exe utility is included in Chapter 14. For now, we are con7
cerned only with the –autorecover switch. Usage of the –autorecover switch with Mofcomp.exe
is illustrated in the following listing. In this example, I place Eviewer.mof into the Autorecover
MOF registry location. A friendly “Done!” informs you that the operation was successful.

C:\>mofcomp -autorecover "C:\PROGRAM FILES\WMI TOOLS\EVIEWER.MOF".

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180 .

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved. .

Parsing MOF file: C:\PROGRAM FILES\WMI TOOLS\EVIEWER.MOF .

MOF file has been successfully parsed .

Storing data in the repository... .

Done!.

Exploring WMI Settings with WMI
Looking through the registry, clicking numerous tabs of overpopulated MMCs, and using
strange utilities might sound like fun to some people, but I prefer to let VBScript do the work
for me. After all, you might ask, why learn to script if you are not going to use that knowledge?
See what you can find out about your WMI configuration by scripting. It just so happens, an
entire class is devoted to WMI settings; it is appropriately called the Win32_WMISetting class.
The script, WMISettings.vbs, returns a computer’s current WMI configuration settings.

WMISettings.vbs
strComputer = "." .

wmiNS = "\root\cimv2" .

wmiQuery = "Select * from Win32_WMISetting" .

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS) .

Set colItems = objWMIService.ExecQuery(wmiQuery) .

For Each objItem in colItems .

wscript.echo "ASPScriptDefaultNamespace: " & objItem.ASPScriptDefaultNamespace .

wscript.echo "ASPScriptEnabled: " & objItem.ASPScriptEnabled .

wscript.echo "AutorecoverMofs: " & vbcrlf & vbtab & _ .

46 Part I: Getting Started with WMI
join(objItem.AutorecoverMofs, "" & vbcrlf & vbtab) .

wscript.echo "AutoStartWin9X: " & objItem.AutoStartWin9X.

wscript.echo "BackupInterval: " & objItem.BackupInterval.

wscript.echo "BackupLastTime: " & objItem.BackupLastTime.

wscript.echo "BuildVersion: " & objItem.BuildVersion .

wscript.echo "Caption: " & objItem.Caption .

wscript.echo "DatabaseDirectory: " & objItem.DatabaseDirectory .

wscript.echo "DatabaseMaxSize: " & objItem.DatabaseMaxSize .

wscript.echo "Description: " & objItem.Description .

wscript.echo "EnableAnonWin9xConnections: " & objItem.EnableAnonWin9xConnections .

wscript.echo "EnableEvents: " & objItem.EnableEvents .

wscript.echo "EnableStartupHeapPreallocation: " & objItem.EnableStartupHeapPreallocation .

wscript.echo "HighThresholdOnClientObjects: " & objItem.HighThresholdOnClientObjects .

wscript.echo "HighThresholdOnEvents: " & objItem.HighThresholdOnEvents .

wscript.echo "InstallationDirectory: " & objItem.InstallationDirectory .

wscript.echo "LastStartupHeapPreallocation: " & objItem.LastStartupHeapPreallocation .

wscript.echo "LoggingDirectory: " & objItem.LoggingDirectory .

wscript.echo "LoggingLevel: " & objItem.LoggingLevel .

wscript.echo "LowThresholdOnClientObjects: " & objItem.LowThresholdOnClientObjects .

wscript.echo "LowThresholdOnEvents: " & objItem.LowThresholdOnEvents .

wscript.echo "MaxLogFileSize: " & objItem.MaxLogFileSize.

wscript.echo "MaxWaitOnClientObjects: " & objItem.MaxWaitOnClientObjects .

wscript.echo "MaxWaitOnEvents: " & objItem.MaxWaitOnEvents .

wscript.echo "MofSelfInstallDirectory: " & objItem.MofSelfInstallDirectory .

wscript.echo "SettingID: " & objItem.SettingID .

wscript.echo " ".

next.

Summary
In this chapter, we looked at the various settings you can configure for the WMI service in
both Windows XP and Windows Server 2003. We looked at three methods for examining or
making these configuration changes: through the MMC, through the registry, and through the
Win32_WMISetting class. We also discussed making changes to logging detail levels and
changing the logging location. We examined the effect of making logging-level changes and
discussed how the changes take place immediately after the setting is modified. Changes to
the logging location, however, require a service restart. We explored the methods for backing
up the WMI repository and examined the contents of the Autorecover MOF key in the registry.
Finally, we looked briefly at the Win32_WMISetting WMI class.

Quiz Yourself
Q: What is one difference between using the WMI Control console from the Com
puter Management console and using it in a custom MMC snap-in?

A: When added as an MMC snap-in, the WMI Control console enables you to redirect to
additional computers and provides the opportunity for you to specify alternative creden7
tials.

Chapter 2: Configuring WMI 47
Q: When restoring the WMI repository using the WMI Control console, what is one
important consideration?

A: When restoring the WMI repository using the WMI Control console, no warning
message is displayed prior to restoration.

Q: Your WMI service detects a corrupt WBEM repository and performs an auto
matic recovery operation. However, you notice that one of your monitoring scripts
no longer works. What is the first thing you should check?

A: The first thing you should check after an automatic recovery operation is the MOF
files that are detailed in the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Autorecover MOFs

Q: What are two methods you can use to ensure that a custom provider is automat
ically recovered?

A: One way to ensure that the provider is automatically recovered is to edit the MOF file
and add the #pragma autorecover command. Another method is to compile the MOF file
using Mofcomp.exe and specify the –autorecover switch.

On Your Own

Lab 4 Backing Up the WMI Repository

In this lab, you will back up the WMI repository. This is an extremely important procedure
that is easy to perform. This backup of the WMI repository is essential if you change some7
thing—security settings, namespaces, or even classes and providers—in the repository and
then need to quickly revert back.

1.	 Open a blank MMC by clicking Start and then choosing Run. Type MMC in the Open
box in the Run dialog box, and click OK. A blank MMC appears.

2.	 From the File menu, choose Add/Remove Snap-In, and then click Add in the Add/
Remove Snap-In dialog box.

3. Choose WMI Control from the list that appears, and click Add.

4. Select Local Computer, and then click Finish.

5. Click Close, and then click OK.

6.	 You now have the WMI Control console in a custom MMC. Save the MMC in the Admin7
istrative Tools folder by choosing Save from the File menu. Name the console WMI.msc,
and then click OK.

7.	 Right-click the WMI Control (Local) icon in the left-hand pane and select Properties
from the shortcut menu. Click the Backup/Restore tab and click Back Up Now.

48 Part I: Getting Started with WMI
8. In the dialog box that appears, name the backup yourname.rec, and then click Open.

9. A Backup In Progress dialog box appears for a few seconds and then closes.

10. Click OK to close the WMI Control (Local) Properties dialog box.

11. Open Windows Explorer and navigate to the %SystemRoot%\System32\WBEM\Repos7
itory directory. You should see the yourname.rec file. This indicates the backup was suc7
cessful.

Lab 5 Restoring the WMI Repository

In this lab, you will restore the WMI repository by using the backup you made in Lab 4.

1.	 Open the WMI.msc console you created in Lab 4. It should be available from the Admin7
istrative Tools folder if you saved it to the default location.

2.	 Right-click WMI Control (Local) in the left-hand pane under Console Root, and click
Properties.

3.	 In the WMI Control (Local) Properties dialog box click the Backup/Restore tab, and
click Restore Now.

4.	 In the Specify A Backup File To Restore dialog box, select yourname.rec, which you cre7
ated in Lab 4.

5. After selecting the REC file, click Open. The restore operation begins immediately.

6.	 The WMI Control dialog box appears stating, “The restore operation is still in progress.
Once the restore has completed, you can reconnect to the computer from the General
tab. Errors while attempting to reconnect may indicate that the target computer is not
ready for new connections yet.” Click OK.

7.	 An error is displayed in the General tab of the WMI Control (Local) Properties dialog
box. This error states, “Failed to connect to <local computer> because ‘Target computer
busy.’ ” Click OK.

8.	 Notice you cannot click OK to make the error message go away. Click Cancel instead to
close the error message.

9.	 Go back to the WMI.msc console you created in Lab 4. Right-click WMI Control (Local),
and select Properties.

10. The message in the middle of the General tab indicates that you are successfully con7
nected to <local computer>, indicating the restore was successful.

11. Open the file WinMgmt.log, located at %SystemRoot%\System32\WBEM\Logs, and
scroll down to the bottom of the file.

12. Look for entries that indicate the core is being shut down. They look something like the
following:

Chapter 2: Configuring WMI 49
0x0

Name

(Sun Feb 20 14:45:48 2005.77755977) : core is being shut down by WinMgmt, it returned

(Sun Feb 20 14:45:48 2005.77756037) : core is being resumed: it returned 0x0

These entries indicate WMI was shut down and then restarted so you could perform the
restore operation.

13. Look at WbemCore.log as well. Examine the items logged there during the shutdown
and restart of the services while the restore is taking place.

14. Do the restore one more time, but this time watch your computer clock, and start the
restore just after a new minute starts. Make note of the exact time, click Restore | Recon7
nect, and then open the two logs. Again look at the bottom of each log and see what
actually occurs during the restore operation.

15. Close the WMI.msc console tool.

Lab 6 Exploring WMI Settings via Script

In this lab, you will explore the Win32_WMISetting class and use it to report on the current
configuration of your WMI service.

1.	 Look up the Win32_WMISetting class in the Platform software development kit (SDK).
You can see from the article that this class contains the operational parameters for the
WMI service.

2.	 Scroll through the article and see whether there are any methods you can use to config7
ure WMI.

3. You will find there are no methods.

4.	 There are, however, 26 properties associated with this class. It is way too much typing if
you want to echo out all the property values. You need to create a tool to help you.

5.	 Open the ListClassPropertiesIntoArray.vbs script, and examine the contents of the file.
Notice you are pulling the properties_ of the class.

6. Locate the line in the script that looks like the following:

strClass = "Win32_WmiSetting" 'Here is the Class Name

7.	 Change the code so that the value comes from an input box. If you are unfamiliar with
the parameters available for the inputbox function, look it up in the Platform SDK. Sup-
ply a meaningful prompt, title, and, if you wish, even a default value. The new line will
look something like the following:

strClass = inputbox("type in your class","ClassExplorer", "Win32_") 'Here is the Class

8.	 Once that works, you can decide to clean up the code and place each of the three param7
eters in a variable. If so, complete the following steps. First, declare some variables,
which go in the header section of the script. I used the following:

50 Part I: Getting Started with WMI
Dim StrPrompt, StrTitle, StrDefault ' used for InputBox Function

9.	 Next, supply values for each of the variables. These go in the reference section of the
script and look something like the following:

StrPrompt = "Type in the class to explore"

StrTitle = "ClassExplorer"

StrDefault = "Win32_"

10. Now redo the inputbox function. This time, simply use the variables in order so it looks
like the following:

strClass = inputbox(StrPrompt, StrTitle, StrDefault) 'Supply class to input box.

11. Save and run the script. An input box will pop up in which you can type the last part of
the class name: wmisetting. You will retrieve an output of all the class properties.

12. If you wish, you can modify the line near the bottom of the script, which builds a single
variable from each element in the array that contains all the properties in the class. The
line looks like the following:

prop= prop & Array1(b) & vbcrlf

13. You can modify it by adding a Wscript.echo command so that it writes some of the code
for you. The line now looks like the following:

prop= prop & "Wscript.echo objItem." & Array1(b) & vbcrlf

14. Save this script as StudentLab6a.vbs.

15. Run StudentLab6a.vbs and copy the output to the Clipboard.

16. Open WmiTemplate.vbs and paste the output from step 15 inside the For Next loop. The
code looks like the following:

For Each objItem in colItems

Wscript.echo objItem.ASPScriptDefaultNamespace

Wscript.echo objItem.ASPScriptEnabled

Wscript.echo objItem.AutorecoverMofs

Wscript.echo objItem.AutoStartWin9X

Wscript.echo objItem.BackupInterval

Wscript.echo objItem.BackupLastTime

Wscript.echo objItem.BuildVersion

Wscript.echo objItem.Caption

Wscript.echo objItem.DatabaseDirectory

Wscript.echo objItem.DatabaseMaxSize

Wscript.echo objItem.Description

Wscript.echo objItem.EnableAnonWin9xConnections

Wscript.echo objItem.EnableEvents

Wscript.echo objItem.EnableStartupHeapPreallocation

Wscript.echo objItem.HighThresholdOnClientObjects

Wscript.echo objItem.HighThresholdOnEvents

Wscript.echo objItem.InstallationDirectory

Wscript.echo objItem.LastStartupHeapPreallocation

Wscript.echo objItem.LoggingDirectory

Wscript.echo objItem.LoggingLevel

Chapter 2: Configuring WMI 51
Next

Wscript.echo objItem.LowThresholdOnClientObjects

Wscript.echo objItem.LowThresholdOnEvents

Wscript.echo objItem.MaxLogFileSize

Wscript.echo objItem.MaxWaitOnClientObjects

Wscript.echo objItem.MaxWaitOnEvents

Wscript.echo objItem.MofSelfInstallDirectory

Wscript.echo objItem.SettingID

Make sure you edit the line that contains the wmiQuery. Add the wmiClass name you are
working with—here, it is Win32_WMISetting. Simply type the last part of the name:
wmisetting. The completed line looks like the following:

wmiQuery = "Select * from win32_WmiSetting"

17. Save the script as StudentLab6a.vbs and then run it. The script should run successfully.

18. Turn off On Error Resume Next by placing a comment mark in front of it. Now run the
script. A type mismatch error will appear. The following is the offending line:

Wscript.echo objItem.AutorecoverMofs

19. Go back to the Win32_WMISetting article in the Platform SDK and read what it has to
say about this property. In fact, this article calls it a string (don’t worry, I filed a bug
report). However, I believe it is an array. How can you check for sure? Use the isArray
function.

20. First, turn on On Error Resume Next again by removing the comment mark on that line.
Then add some code just below the line that echoes out AutorecoverMofs. The modified
line will look like the following:

Wscript.echo objItem.AutorecoverMofs

WScript.Echo IsArray(objItem.autorecovermofs) & " Is it an array?"

21. Run the script and you will see the answer:

True Is it an array?

22. Now that you know for sure that you are dealing with an array, you can use standard
array techniques to retrieve information. Use the join function. If you are unfamiliar with
this function, look it up in the Platform SDK.

23. Turn off the isArray line by placing a comment mark at the beginning of the line.

24. Modify the Wscript.echo objItem.AutorecoverMofs so that you use the join function to con7
vert the array into a string. The modified line of code looks like the following:

Wscript.echo join(objItem.AutorecoverMofs, "," & vbcrlf)

25. Run the script and see all the MOF files that are automatically recovered.

26. Turn off On Error Resume Next and see if the script does this successfully. If it does not,
compare it with the Lab6Bsolution.vbs script.

27. Save your work.

P02622310.fm September 27, 2005 Tuesday,Page 53 2:07 PM

Part II
WMI Queries and Events/

P02622310.fm September 27, 2005 Tuesday,Page 54 2:07 PM

Chapter 3

Using Basic WMI Queries

Now that you are armed with an understanding of the structure of Windows Management
Instrumentation (WMI), it is time to focus on the most fundamental WMI skill—performing
queries. When you want to find the amount of free disk space on a server, you will use a query.
When you want the server to respond to a specific error condition, you will use a query. If you
want to find which WMI classes are base classes, you will use a query. As you can see, the
query is foundational to the use of WMI in the enterprise space. You might also have noticed
that there are three different types of WMI queries:

■ Data query

■ Event query

■ Schema query

How to use each type of query is detailed in this chapter. This chapter also discusses the rea
sons you might use one type of query rather than another. Also covered are the features the
queries have in common as well as the unique features of each type.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ WMI default namespaces

■ Basic elements of the WMI architecture

■	 Basic elements of reading and writing Microsoft Visual Basic Scripting Edition
(VBScript)

■ Collections and using For Each Next

■ Arrays and manipulating collective data

After you complete this chapter, you will be familiar with the following concepts:

■ The difference between a data query, an event query, and a schema query

■ The basic syntax of a WMI Query Language (WQL) Select statement

■ Using a WQL Where clause to limit the amount of returned data

55

56 Part II: WMI Queries and Events
■ Using the _Class property in a WQL Where clause

■ Using the WMI moniker

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter03 folder.

Understanding WQL
To query WMI, you must become familiar with WMI Query Language (WQL). If WQL
reminds you of SQL, which stands for structured query language, it is for good reason. WQL
is actually a subset of SQL—with some additions that make it more useful for returning infor
mation through WMI. When you perform a query using WMI, you have the ability to return
prodigious amounts of information. This is compounded when the script runs against multi
ple machines. To deal with this, you need to know how to reduce the amount of information
returned. Essentially, you can use the following four methods to specify the amount of data
returned from a WMI query:

■ Return everything from everything (basic Select statement)

■ Return some things from everything (modified Select statement)

■ Return everything from some things (modified Where clause)

■ Return some things from some things (modified Select statement and Where clause)

As you can see, the means to control the WMI query consists of modifying either the Select
statement or the Where clause. I cover each of these operations in this chapter. But before I do
that, first we need to talk a little bit about the WMI moniker.

Using the Moniker
The WMI moniker is probably the most common means used to make a connection into
WMI. The advantages of using the moniker are its simplicity, ease of use, and compact design.
The disadvantage is its lack of flexibility and support for advanced queries.

The WMI moniker consists of the following three parts:

■ Prefix

■ Security

■ Path

Chapter 3: Using Basic WMI Queries 57
The Prefix

The prefix portion of the WMI moniker is the only part of the connection string that is man
datory. You use the winmgmts:// prefix to connect into WMI. When you use this connection
string, you use the GetObject method. You use GetObject over CreateObject when the WMI pro
cess is already running and resident in memory, so it is necessary only to make a connection
to it instead of creating another instance of the service.

The Security

Two parts of the security settings can be specified in the moniker. The first part is the imper
sonation level. The second is the addition or subtraction of privilege strings. (Privilege strings
are discussed in Chapter 7.)

Impersonation Levels

There are four impersonation levels that correspond to the Distributed Component Object
Model (DCOM) security settings available on a computer. Table 3-1 lists the four imperson
ation levels and their associated registry settings.

Table 3-1 WMI Impersonation Levels

Moniker Impersonation Level Description Registry Value

Anonymous Hides the credentials of the caller. Calls 1
to WMI might fail with this impersonation
level.

Identify Allows objects to query the credentials of 2
the caller. Calls to WMI might fail with this
impersonation level.

Impersonate Allows objects to use the credentials of 3
the caller. This is the recommended imper-
sonation level for Scripting API for WMI
calls.

Delegate	 Allows objects to permit other objects to 4
use the credentials of the caller. This imper
sonation level works with Scripting API for
WMI calls but might constitute an unneces
sary security risk.

If you decide to specify the impersonation level of the script, it would look like the following:

Set objWMIService=GetObject("winmgmts:{ImpersonationLevel=Impersonate}")

Because Impersonate is the default impersonation level for WMI, the addition of the preced
ing line is redundant. If you want to keep your moniker nice and clean, yet feel the need to
modify the impersonation level, you can do this easily by defining the impersonation level of
the SWbemSecurity object. In practice, your code might look like the following:

58 Part II: WMI Queries and Events
Set objWMIService=GetObject("winmgmts:\\" & strComputer & wmiNS)

objWMIService.Security_.ImpersonationLevel = 4

In the preceding code, the first line contains the normal moniker to make the connection to
WMI. Then you use strComputer and wmiNS to specify the target computers and target
namespace, respectively. Because you have not specified an impersonation level, you are using
the default Impersonate security setting. On the next line, use the handle that came back from
the GetObject method that was assigned to objWMIService and define the ImpersonationLevel to
be equal to 4, for Delegate (see Table 3-1). Obviously, you could define a constant and set it to
a value of 4; then substitute the constant value for 4 in the script. ImpersonationLevel is a prop
erty of Security_. Security_ is a property of the SWbemSecurity object. The SWbemSecurity object
is used to read or set security settings for other WMI objects such as SWbemServices, which is
actually the object created when you use GetObject and the WMI moniker.

The Path

The path portion of the WMI moniker connection string consists of two parts: the computer
name and the WMI namespace. As you have seen in many scripts, the name of the local com
puter is often abbreviated as “.”. It is also possible to leave the computer name out all together.
The WMI namespace can also be omitted if you are using the default values, which are dis
cussed in the next section.

Using the Defaults
A number of defaults are configured for WMI. Chapter 2 discusses these default values and
examines ways to modify them. Often you can simply rely on the defaults and avoid a lot of
extra typing. Following are a few default values:

■	 Default computer name To operate the script against the local computer use “.”,
which means the computer is not specified.

■	 Default impersonation level The default impersonation level is to impersonate the
logged-on user using the Impersonate setting.

■ Default namespace The default namespace is root\cimv2.

Because several fields are optional in constructing a finely tuned WMI moniker, it should be
rather obvious that clearly defined defaults are available for the optional fields. The defaults
are stored in the following registry location: HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\WBEM\Scripting. There are two keys. One is called Default Impersonation Level,
and the other is called Default Namespace. The Default Impersonation Level is set to a default of
3, which means that WMI will impersonate the logged-on user. The Default Namespace is set to
root\cimv2. The default computer is the local machine, so you do not need to specify a com
puter name if you are simply running against the local machine. In reality, these are useful

Chapter 3: Using Basic WMI Queries 59
defaults because they enable you to simplify your connection string to WMI. A default moni
ker is "winmgmts:\\". When using the GetObject method, you could simplify your connection
string to the following:

Set objWMIService = GetObject("winmgmts:\\")

Understanding Data Queries
A data query is a query that retrieves basic WMI information. For example, if I want to know
how much physical memory I have in my server, I make a query into Win32_OperatingSystem
and ask for the FreePhysicalMemory property. Data queries are the most common types of que
ries used in WMI.

You can use WQL to perform data queries. The following script, Win32_Display-
Configuration.vbs, which returns display adapter information, is typical of the data query.
After making a connection into WMI using the moniker winmgmts, you use the ExecQuery
method to run the query. The WMI query used in this example is the basic “tell me everything
about everything” type of query.

Return Only the Data You Intend to Use
As you explore the WMI classes, properties, and methods, you are likely to be over-
whelmed by the voluminous amount of data available. Most of the scripts you see on the
Internet are the simple “Select * from className” variety. This is a completely valid
approach if you are interested in obtaining all the information possible about a particu
lar item.

One thing to keep in mind is that this approach consumes resources. On a workstation,
it takes CPU time to retrieve the data; then it takes network resources to bring it across
in packets; and finally, it takes CPU time on the workstation again to bring the data to
the application. Additionally, if you are reading the output without further processing,
you have a potentially long line of text to scroll through. It is better to be more selective.

For example, when I was in Navy boot camp, a sign in the dining hall said, “Take all you
want, but eat all you take.” We were allowed to fill our plates with as much food as we
desired. But if we did not eat all of it, the drill instructor would gently assist us with our
appetites (generally, he made us do push-ups until the food disappeared from our
plates). So, when using data queries, do not be greedy—return only the information you
plan on using.

60 Part II: WMI Queries and Events
Using the Select Statement
The Select statement is the most basic WQL command. It is one of three commands that can
be used to retrieve data from WMI. Most of the time, when you need to retrieve data from
WMI, you will use the Select statement, so it is important to understand it. Basically, you can
perform the following four kinds of Select statements, which are discussed in the following
subsections.

■ Select everything from everything

■ Select some things from everything

■ Select everything from some things

■ Select some things from some things

Select Everything from Everything

When you compose WQL statements, you have the opportunity to choose everything. This is
represented by the asterisk (*).

As you look at the script called Win32_DisplayConfiguration.vbs, you can see it starts by spec
ifying the namespace root\cimv2, which is the default namespace; in Microsoft Windows
Server 2003 and Windows XP, it really is not necessary to specify this namespace. But it does
not hurt and has the advantage of already being in the script WMITemplate.vbs, which is avail-
able on the accompanying CD. Also, it makes it easy to change namespaces later if required.

The wmiQuery is Select *, which means you are selecting everything from the class that is
called Win32_DisplayConfiguration. Look up Win32_DisplayConfiguration in the Platform soft-
ware development kit (SDK) and you will see it has 15 properties and no methods. This class
is derived from the CIM_Setting class, which defines only three properties—caption, description,
and settingID—and no methods. The other dozen properties were defined by Microsoft Corpo
ration in its implementation of WMI to describe the unique configuration of a Microsoft Win-
dows–based display.

Win32_DisplayConfiguration.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_DisplayConfiguration"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "BitsPerPel: " & objItem.BitsPerPel

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceName: " & objItem.DeviceName

wscript.echo "DisplayFlags: " & objItem.DisplayFlags

wscript.echo "DisplayFrequency: " & objItem.DisplayFrequency

wscript.echo "DitherType: " & objItem.DitherType

Chapter 3: Using Basic WMI Queries 61
wscript.echo "DriverVersion: " & objItem.DriverVersion

wscript.echo "ICMIntent: " & objItem.ICMIntent

wscript.echo "ICMMethod: " & objItem.ICMMethod

wscript.echo "LogPixels: " & objItem.LogPixels

wscript.echo "PelsHeight: " & objItem.PelsHeight

wscript.echo "PelsWidth: " & objItem.PelsWidth

wscript.echo "SettingID: " & objItem.SettingID

wscript.echo "SpecificationVersion: " & objItem.SpecificationVersion

wscript.echo " "

next

Select Some Things from Everything

One of the most basic ways you can reduce the amount of information returned by a query is
to select only what is needed. The properties that you choose can be individually selected. The
Win32_ComputerSystem class is a very rich class with more than 50 properties and three meth
ods. (A sample script that lists all the properties is in the Cimv2 script folder. It is called
Win32_ComputerSystem.vbs.) Clearly, this is a very good class to use to practice trimming
down the amount of information returned.

For example, suppose I am doing inventory on my network. I want to know the make and
model of the computers and the names of the users who are logged on to each computer. In
this case, it certainly makes sense to return only those 3 properties as opposed to retrieving
more than 50 properties. The following script, MakeModelUser.vbs, is essentially the same as
the preceding Win32_DisplayConfiguration.vbs script we looked at earlier. The only differ
ences are the name of the WMI class and a modification to the Select statement.

Tip The important thing to realize is that you simply separate each property with a comma
and there is no trailing comma after the last property. If you add one, the entire script will fail—
no data is retrieved. The syntax is “Select property name, property name, property name from
class name”. The underscore (_) is used for line continuation. Because the query is broken in the
middle of the query string in the following code listing, you also need to use the ampersand
(&) to glue the line back together.

MakeModelUser.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select Manufacturer, Model, UserName" _

& " from Win32_ComputerSystem"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "Model: " & objItem.Model

wscript.echo "UserName: " & objItem.UserName

next

62 Part II: WMI Queries and Events
Where Is the Where Clause?
Modifying the Select statement is useful in limiting the data that is returned; similarly, you can
also modify the Where clause. The Where clause is an optional part of the WMI query. It, too,
can be very useful in reducing the amount of information that comes back from a WMI query.
You can modify a Where clause in many ways, including the following:

■ Filter on a property value by using a comparison operator

■ Filter on a property if it is NULL

■ Filter on a property if it is not NULL

■ Filter on a property by making a compound comparison

Select Everything from Some Things

The first script in this section reverts back to the “select everything” type of statement. How-
ever, you can modify the amount of data returned by limiting the scope of the operation to
only one instance. Do this by adding a Where clause to the query.

The Win32_NetworkAdapter class, also found in the root\cimv2 namespace, can provide a
wealth of information about the network adapter on your computer. Look it up in the Plat-
form SDK (I’ll wait). The Win32_NetworkAdapter class defines 35 properties and no methods.
(It actually inherits two methods from CIM_NetworkAdapter, but they are not implemented. It
also inherits 24 properties from CIM_NetworkAdapter.)

The interesting thing about most computers is the variety of items the device manager consid
ers to be network adapters when queried. For example, my laptop has a built-in wired connec
tion, a wireless connection, and a Bluetooth connection. I would expect it to have only three
adapters. But there are others also: virtual network adapter, virtual private network (VPN)
connection, cable peer connection. When I query the Win32_NetworkAdapter class, perhaps I
am interested only in the wired connection. To return only information about the wired con
nection, I must modify the Where clause. This might sound easy, but in reality it can be rather
cumbersome because of the funky names used by the device manager to identify the connec
tions.

You can use any property you wish in the Where clause. Some potential candidates include
Caption, Description, DeviceID, Index, Name, Manufacturer, PNPDeviceID, and even MAC-
Address. Some of these properties uniquely describe the adapter (MACAddress); others do
not (Manufacturer). My personal preference is to use a property that uniquely identifies the
adapter and at the same time is easy to type. If you like to rename your adapters that show up
in Network Neighborhood, as shown in Figure 3-1, you have a very easy property to use. The
trick, of course, is to find out what WMI actually calls the property once you change it. The
way I found this information was to do the “everything from everything” query first (using the
Win32_NetworkAdapter.vbs script in the cimv2 scripts folder). Then I did a Find command in

Chapter 3: Using Basic WMI Queries 63
the results for the name I had assigned to the adapter. It was then that I found the unique
name was stored in the NetConnectionID property.

Figure 3-1 Uniquely identifying a network adapter

To use the Where clause, you choose a property and specify a value for the property. The mod
ified Win32_NetworkAdapter.vbs script is called WiredNetworkAdapter.vbs, and it uses the
fact that I named my network adapter enetLan. If yours still uses the default name, it would be
called Local Area Connection or perhaps Wireless Network Connection. You can easily
rename an adapter by right-clicking the computer icon in the Windows Network Connections
window and choosing Rename from the Action menu. Using a short name helps you avoid
typing a 20-character connection name.

WiredNetworkAdapter.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_NetworkAdapter where NetConnectionID = 'enetLan'"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "AdapterType: " & objItem.AdapterType

wscript.echo "AdapterTypeId: " & objItem.AdapterTypeId

wscript.echo "AutoSense: " & objItem.AutoSense

wscript.echo "Availability: " & objItem.Availability

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

64 Part II: WMI Queries and Events
wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "Index: " & objItem.Index

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "Installed: " & objItem.Installed

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "MACAddress: " & objItem.MACAddress

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "MaxNumberControlled: " & objItem.MaxNumberControlled

wscript.echo "MaxSpeed: " & objItem.MaxSpeed

wscript.echo "Name: " & objItem.Name

wscript.echo "NetConnectionID: " & objItem.NetConnectionID

wscript.echo "NetConnectionStatus: " & objItem.NetConnectionStatus

wscript.echo "NetworkAddresses: " & objItem.NetworkAddresses

wscript.echo "PermanentAddress: " & objItem.PermanentAddress

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "ProductName: " & objItem.ProductName

wscript.echo "ServiceName: " & objItem.ServiceName

wscript.echo "Speed: " & objItem.Speed

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "TimeOfLastReset: " & objItem.TimeOfLastReset

wscript.echo " "

next

In the preceding script, the Where clause looks like the following:

wmiQuery = "Select * from Win32_NetworkAdapter where NetConnectionID = 'enetLan'"

Comparison Operators

Note that the value supplied for the property NetConnectionID is ′ enetLan′ . The single quotes
are required here or the query will fail. Other operators that can be used for this type of query
are listed in Table 3-2.

Table 3-2 Comparison Operators

Operator Meaning

= Equal

<> Not equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= Not equal

Chapter 3: Using Basic WMI Queries 65
The operators in Table 3-2 probably are familiar to you because they are basic algebra func
tions (now you know why you had to learn that stuff back in school). WQL also defines some
additional operators: IS, IS NOT, ISA, LIKE. The meaning of these operators might not be as
obvious, so I discuss them individually later.

Select Some Things from Some Things

When you modify both the Select statement and the Where clause, you can limit the retrieval
to just the information needed to satisfy your requirements. You reduce the amount of infor
mation you have to process and the number of instances of the class with which you need to
work.

The Win32_NetworkProtocol class represents a protocol and the associated network character
istics when it is installed on a computer running the Windows operating system. This class
contains 22 properties and no methods. To retrieve just the information you are looking for,
modify both the Select statement and the Where clause. The script SpecificNetworkProto
cols.vbs illustrates the value of taking the time to craft a nice WMI query. The first time I ran
the script, Win32_NetworkProtocol.vbs from the Scripts\Supplemental Scripts\cimv2 folder
on the accompanying CD, it returned so much data I was unable to sort through it effectively.
I was interested only in the quality of service property for the protocol. Once I modified the
Select statement and limited the instances that were returned to only those that support qual
ity of service, I was able to find the information I needed quickly. The Name property is the key
value for this class. When using WQL, you do not need to select the key because it is automat
ically selected. This saves you some typing and still enables you to work with the Name prop
erty in the output section.

SpecificNetworkProtocols.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select Description, SupportsGuaranteedBandwidth, SupportsQualityofService" _

& " from Win32_NetworkProtocol where SupportsQualityofService = 'true'"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Description: " & objItem.Description

wscript.echo "Name: " & objItem.Name ' name is key value

wscript.echo "SupportsGuaranteedBandwidth: " & objItem.SupportsGuaranteedBandwidth

wscript.echo "SupportsQualityofService: " & objItem.SupportsQualityofService

wscript.echo " "

next

IS Operator

The IS operator at first seems to be basically the same as the equality operator. This is not true,
however, because it really is limited in its use in the WQL Where clause. The IS operator can be
used only when the value you are comparing (called the constant) is NULL.

66 Part II: WMI Queries and Events
Null Is Not Zero Null means we do not really know the value, maybe because the data is
missing, invalid, or just not supported on that platform. If we wanted to look at FreeSpace on
partition 3 for a machine with two partitions, that value would come back as NULL. Clearly, the
amount of free space is not zero. We could have zero free space on partition 2, but not on par
tition 3. Because we cannot connect to partition 3, we do not know how much free space is
there. We can make comparisons against NULL, but it can be rather tricky at times to predict
accurately what the outcome will be.

An example of using the IS operator is shown in the following script called NullMacAd
dress.vbs. In this script, I change the query from looking for a network adapter with a specific
name to looking for a network adapter that does not have a Media Access Control (MAC)
address, which could indicate adapters that are not currently initialized (that is, they have
been disabled). I don’t need to return MACAddress because it is a null value. Besides leaving
out some additional details, MACAddress is left out as well. This script returns information
from all instances of the Win32_NetworkAdapter class but only if the MACAddress is a null
value. I am able to make the evaluation on the MACAddress property because it is included in
the Select statement (I selected everything by doing Select *).

NullMacAddress.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_NetworkAdapter where MACAddress IS null"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "Index: " & objItem.Index

wscript.echo "Installed: " & objItem.Installed

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "Name: " & objItem.Name

wscript.echo "NetConnectionID: " & objItem.NetConnectionID

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "ProductName: " & objItem.ProductName

wscript.echo "ServiceName: " & objItem.ServiceName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "TimeOfLastReset: " & objItem.TimeOfLastReset

wscript.echo " "

next

Compound Where Clause

Let’s trim the script even further and combine two operators, as shown in the following script,
AdapterMicrosoft.vbs. This time I use the IS NULL operator and specify a value for the Manu
facturer property as well. In this way, I find all the adapters that were made by Microsoft that
have a NULL MACAddress. I limit the data returned to only the properties I specify in the Select
statement. The modified query looks like the following:

Chapter 3: Using Basic WMI Queries 67
"Select MACAddress, Manufacturer, Name, Description from Win32_NetworkAdapter" _

& " where manufacturer = 'Microsoft' and MACAddress is null"

Note that I use a compound Where clause in this query. I want to know where the manufac
turer is equal to Microsoft but only if the MACAddress is also NULL. This is a great technique
for really focusing on the data that you are interested in retrieving.

AdapterMicrosoft.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select MACAddress, Manufacturer, Name, Description from Win32_NetworkAdapter" _

& " where manufacturer = 'Microsoft' and MACAddress is null"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Description: " & objItem.Description

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "Name: " & objItem.Name

wscript.echo " "

next

Is Not Operator

The IS NOT operator works the same way the IS operator does. It must evaluate a null condi
tion. However, there are problems with evaluating a null condition. In the following script, if
you have groups without a description, the script completes successfully, but it returns groups
both with descriptions and without descriptions.

Win32_GroupDescriptionNotNull.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_group where Description is not Null"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo "Description: " & objItem.Description

WScript.echo "Is description field null? " & IsNull(objItem.description)

Wscript.Echo "Domain: " & objItem.Domain

Wscript.Echo "LocalAccount: " & objItem.LocalAccount

Wscript.Echo "Name: " & objItem.Name

Wscript.Echo "SID: " & objItem.SID

Wscript.Echo "SIDType: " & objItem.SIDType

WScript.echo ""

Next

In the following WriteProcessesAndServicesToTxt.vbs script, I use the IS NOT operator to pull
out processes and services that have a NOT NULL process ID. I do this because the
Win32_Process class does not have a property that identifies the running status of a process.
Whereas Win32_Service does implement this method, Win32_Process does not. So, I pull back
a list of processes only if the process ID (PID) is not a null value. This does not filter out every-

68 Part II: WMI Queries and Events
thing. I am looking for running processes, and the IS NOT NULL operator returns a lot of pro
cesses with a PID of 0. Zero, as you might recall from the earlier discussion, is not the same
thing as NULL, and so these process IDs slip through the filter. To compensate for this, I use
a simple If (objItem2.ProcessID) > 0 then construction. This helps achieve the desired result.

The other item that is of interest is the write to log file subroutine. For testing purposes, this
is a really nice sub because it writes the output to a file on the desktop, making it easy to find.
If you want to see what has changed in the services and processes running on a machine, run
the script with two different output files and compare the results in Windiff.exe.

WriteProcessesAndServicesToTxt.vbs

strOut = "the following Processes are running " & vbcrlf

strOut2 = "the following Services are running " & vbcrlf

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select name, processID from win32_process where processID is not null"

wmiQuery2 = "Select name, processID from win32_Service where processID is not null"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

strOut = strOut & objItem.name & vbcrlf

Next

Set colItems2 = objWMIService.ExecQuery(wmiQuery2)

For Each objItem2 in colItems2

If (objItem2.ProcessID) > 0 then

strOut2 = strOut2 & objItem2.name & vbtab & objItem2.processID & vbcrlf

End if

Next

subWriteToFile

Sub SubWriteToFIle

Dim objFSO, objFile, strDeskTop

Set strDesktop = CreateObject("wscript.shell")' holds instance of WshShell

strDesktop = strDesktop.specialFolders("desktop") ' recycle strDesktop here.

Set objFSO = CreateObject("scripting.filesystemobject")

Set objFILE = objFSO.openTextFIle(strDeskTop & "\" & "servicesOUT.txt", 8, True)

objFile.write strOut & vbcrlf & strOUT2

End sub

Understanding Event Queries
You can use WQL to query for events. “That’s great!” you might exclaim, “But what is an event?”
An event is something that happens on your computer system in response to some other action.
For instance, if a file is deleted, a file deletion event is generated. If a file is created, a file creation
event occurs. If a file is modified, a file modification event is created. These are in fact three of the
main types of events. The listing of events in Table 3-3 can make it seem like there are many dif-

Chapter 3: Using Basic WMI Queries 69
ferent kinds of events, but in reality create, delete, and modify events are repeated at class,
instance, and namespace levels. The other events are operation, method invocation, dropped
event, queue overflow, and failure events. In the labs in this chapter, you examine the appropriate
use of events, and we come back to this topic in much more detail in Chapter 5.

Table 3-3 WMI Event Classes and Descriptions

Event Class Event Description

__ClassCreationEvent Notifies a consumer when a class is created.

__ClassDeletionEvent Notifies a consumer when a class is deleted.

__ClassModificationEvent Notifies a consumer when a class is modified.

__InstanceCreationEvent Notifies a consumer when a class instance is created.

__InstanceOperationEvent	 Notifies a consumer when any instance event occurs, such
as creation, deletion, or modification of the instance. You
can use this class in queries to get all events associated with
an instance.

__InstanceDeletionEvent Notifies a consumer when an instance is deleted.

__InstanceModificationEvent Notifies a consumer when an instance is modified.

__NamespaceCreationEvent Notifies a consumer when a namespace is created.

__NamespaceDeletionEvent Notifies a consumer when a namespace is deleted.

__NamespaceModificationEvent Notifies a consumer when a namespace is modified.

__ConsumerFailureEvent	 Notifies a consumer when some other event is dropped be-
cause of a failure on the part of an event consumer.

__EventDroppedEvent	 Notifies a consumer when some other event is dropped in-
stead of delivered to the requesting event consumer.

__EventQueueOverflowEvent	 Notifies a consumer when an event is dropped as a result of
delivery queue overflow.

__MethodInvocationEvent	 Notifies a consumer when a method call event occurs. This
class is new in Windows XP.

So how does an event query work? Take a look at the MonitorProcessEvents.vbs script. Pay
attention to two unique factors when using an event query. The first is the query. When per-
forming an event query, specify the name of one of the types of events listed in Table 3-3. In the
following MonitorProcessEvents.vbs script, we are interested in an __instanceCreationEvent
because this permits notification when a new process is created. Also of interest in the query
is the specification of the TargetInstance. The TargetInstance is where you specify the class you
are monitoring for events. In the MonitorProcessEvents.vbs script, we are looking for
Win32_Process creation events. Use the ISA operator to filter out only events that come from
Win32_Process.

The second unique characteristic of event queries is the use of the ExecNotificationQuery
method. This method tells WMI that the query is an event query, not a normal data type of
query. Whereas you will often use the ExecQuery method for data queries, you need to use the

70 Part II: WMI Queries and Events
ExecNotificationQuery method for event queries to be able to receive the callback when an
event occurs.

MonitorProcessEvents.vbs

strComputer = "."

wmiNS = "\root\cimv2"

objClass = "'Win32_Process'"

StrMessage = "A new " & objClass & " was created at : "

wmiQuery = "SELECT * FROM __InstanceCreationEvent " _

& "WITHIN 10 WHERE TargetInstance ISA " & objClass

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

Do

Set objItem = colItems.NextEvent

With objItem

Wscript.Echo StrMessage & Now & vbcrlf & .TargetInstance.Name & vbtab & _

.TargetInstance.CommandLine & vbtab & "PID: " & .TargetInstance.ProcessId

End with

Loop

You can also use event queries to check for changes in the state of a service. In the Monitor-
ServiceChanges.vbs script, I use an __InstanceModificationEvent query to find changes in the
state of services on the server. Because I am watching the Win32_Service class, any change to
the state of the class triggers an event. This means any service that starts, stops, pauses, or
undergoes any modification triggers an event. Clearly, on a busy server you would not want to
monitor Win32_Process because processes change constantly on servers.

MonitorServiceChanges.vbs

strComputer = "."

wmiNS = "\root\cimv2"

objClass = "'Win32_Service'"

StrMessage = "A " & objClass & " was modified at : "

strMessage1 = "The Service is now: "

wmiQuery = "SELECT * FROM __InstanceModificationEvent " _

& "WITHIN 10 WHERE TargetInstance ISA " & objClass

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

Do

Set objItem = colItems.NextEvent

With objItem

Wscript.Echo StrMessage & Now & vbcrlf & strMessage1 & _

.TargetInstance.State & vbcrlf & .TargetInstance.Name & _

vbtab & .TargetInstance.PathName & vbtab & "PID: " & _

.TargetInstance.ProcessId

End with

loop

Chapter 3: Using Basic WMI Queries 71
Understanding Schema Queries
You can use WQL to query for elements in the schema. Do not confuse the word schema as it
is used here with the Microsoft Active Directory Schema. The word schema can also be used to
describe the layout of the WMI classes and namespaces and their relationship to one another.
Making schema queries has several benefits. Schema queries are an excellent source of infor
mation about WMI. In some fashion, you can liken a schema query to a query of SYStables in
Microsoft SQL Server. You use WMI to find out about the technology. In another light, you can
simply think of a schema query like any other WMI query—you ask WMI a question, and it
responds with an answer. If you discover a class that is not documented, you can query the
schema to obtain the information you need to enable you to use the class in your scripts.

You can also use schema queries to control the execution of a script: to specify “I want this
operation to happen only if the following conditions are met.” Clearly, using the schema to
control execution of a script requires a superior knowledge of WMI, but the results can be dra
matic.

Following are the four methods available for querying from the WMI schema:

■ SELECT

■ REFERENCES OF

■ ASSOCIATORS OF

■ ISA

Which method you use for a schema query depends on what you are looking for, as well as
any other special needs you have. If you decide to use the Select statement, you need to use a
special class called Meta_Class as the target of operation. When VBScript sees the WMI class
Meta_Class in the Select statement, it recognizes the query as a schema query. In the script
Meta_Class.vbs, which follows, we explore the use of this class.

SWbemObject

The object that comes back from the WMI query in the Meta_Class.vbs script is called
SWbemObject. It is not really important to know this name, unless you want to look it up in the
Platform SDK. If you intend to go very deep into understanding WMI, you need to know the
official names of objects and understand how and when they are created. If, on the other
hand, you only want to run WMI scripts and know enough to modify other people’s scripts in
an intelligent fashion, you don’t need to know the names of objects. In fact, many very tal
ented WMI scripters have never heard the word SWbemObject before, and their code is not
necessarily poorer for it. In the Meta_Class.vbs script, I use the WMI moniker to execute a
very general “select everything from Meta_Class” query.

72 Part II: WMI Queries and Events
Meta_Class.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from meta_Class"

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo vbcrlf & "CLASS: " & objItem.Path_.Class & " has " & _

objItem.properties_.count & " properties and " & _

objItem.qualifiers_.count & " qualifiers" & vbcrlf & _

funLine(objItem.Path_.Class)

WScript.Echo "PROPERTIES:"

For Each b In objItem.properties_

If IsArray(b) Then

wscript.echo vbtab & b.name & " is an array." & _

vbcrlf & vbtab & "Values are: " & Join(b, ",")

Else

WScript.Echo vbtab & b.name

End if

Next

WScript.Echo "QUALIFIERS:"

For Each a In objItem.qualifiers_

If IsArray(a) Then

wscript.echo vbtab & a.name & " is an array." & _

vbcrlf & vbtab & "Values are: " & Join (a, ",")

Else

WScript.Echo vbtab & a.name & " = " & _

objItem.qualifiers_.item(a.name)

End if

Next

Next

Function funLine(lineOfText)

Dim numEQs, separator, i

numEQs = Len(lineOfText) + 42

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = separator

End function

Notice the use of objitem.Path_.class. You can use it to retrieve the Class property of the Path_
property of the SWbemObject. An SWbemObject becomes available when you retrieve a WMI
class definition or an instance of a WMI object. You can think of this process as making your
connection into WMI. The WMI process is always running, and the SWbemObject is always
available. Until you retrieve it for the application, you cannot use any properties or methods
from the SWbemObject object.

Chapter 3: Using Basic WMI Queries 73
SWbemObject Methods

The Meta_Class.vbs script uses only one method from SWbemObject. Many methods, detailed
in Table 3-4, are available to the scripter. Familiarity and comfort in using these methods
enable the enterprising network administrator to add a high level of flexibility and power to
scripts.

Table 3-4 SWbemObject Methods

Method Description

Associators_ Retrieves the associators of the object number

AssociatorsAsync_ Asynchronously retrieves the associators of the object

Clone_ Makes a copy of the current object

CompareTo_ Tests two objects for equality

Delete_ Deletes the object from WMI

DeleteAsync_ Asynchronously deletes the object from WMI

ExecMethod_ Executes a method exported by a method provider

ExecMethodAsync_ Asynchronously executes a method exported by a method provider

GetObjectText_	 Retrieves the textual representation of the object (Managed Object
Format syntax)

Instances_	 Returns a collection of instances of the object (which must be a WMI
class)

InstancesAsync_	 Asynchronously returns a collection of instances of the object (which
must be a WMI class)

Put_ Creates or updates the object in WMI

PutAsync_ Asynchronously creates or updates the object in WMI

SWbemObject Properties

A number of properties, listed in Table 3-5, are also available to an SWbemObject. Although
these properties are particularly valuable during schema queries—pulling out the properties of
a class—they can also be used in self-describing scripts. These properties are also extremely
useful if you are working with a class you found in WMI that does not have any associated
documentation.

Table 3-5 SWbemObject Properties

Property Description

Derivation_ Contains an array of strings describing the derivation hierarchy

Methods_ An SWbemMethodSet object that is the collection of methods for this object

Path_	 Contains an SWbemObjectPath object that represents the object path of the
current class or instance

Properties_	 An SWbemPropertySet object that is the collection of properties for this ob
ject

74	 Part II: WMI Queries and Events
Table 3-5 SWbemObject Properties

Property Description

Qualifiers_	 An SWbemQualifierSet object that is the collection of qualifiers for this ob
ject

Security_	 Contains an SWbemSecurity object used to read or change the security set
tings

SWbemObjectPath

When you use objItem.Path_ to obtain the Path property in the Meta_Class.vbs script, you get
back an SWbemObjectPath object. Instead of just a simple property, an entire object is
returned, which enables you to examine more than just the Path property. Table 3-6 lists the
properties available to an SWbemObjectPath object. The Meta_Class.vbs script uses the Class
property to retrieve the name of the class being enumerated.

Table 3-6 SWbemObjectPath Properties

Property Description

Authority String that defines the Authority component of the object path

Class Name of the class that is part of the object path.

DisplayName	 String that contains the path in a form that can be used as a moniker dis
play name.

IsClass Boolean value that indicates whether this path represents a class.

IsSingleton	 Boolean value that indicates whether this path represents a singleton in-
stance.

Keys An SWbemNamedValueSet object that contains the key value bindings.

Locale String containing the locale for this object path.

Namespace Name of the namespace that is part of the object path.

ParentNamespace Name of the parent of the namespace that is part of the object path.

Path Contains the absolute path. This is the default property.

Relpath Contains the relative path.

Security_ Used to read or change the security settings.

Server Name of the server.

Use of the SWbemObjectPath properties is relatively straightforward, and the object behaves in
the manner you would expect. However, a few peculiarities exist, and these are illustrated in
the script ObjectPathProperties.vbs.

To work with the SWbemObjectPath object, you first must retrieve an instance of an SWbem-
Object. I do this in the ObjectPathProperties.vbs script by making the query into WMI. When
you use the ExecQuery command as shown in the following code, you retrieve an SWbem-
Object:

Chapter 3: Using Basic WMI Queries 75
strComputer = "."

wmiNS = "\root\cimv2"

strClass = "'Win32_logicalDisk'"

wmiQuery = "Select * from meta_Class where __this ISA " & strClass

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Once you have this object, you can look at the object’s path properties. This is where the
quirkiness of the SWbemObjectPath object is revealed. This object works only on an SWbem-
Object. Once you have returned the SWbemObject by using the WMI query, you can connect to
the SWbemObjectPath object and retrieve the properties of the path. In the ObjectPathProper
ties.vbs script, I make the connection to the SWbemObjectPath object when I use the Path_
property of the SWbemObject object. Once I have created the SWbemObjectPath object, I use a
With End With statement to avoid some extra typing as I retrieve the properties of the Path
object. This is illustrated in the following code:

With objItem.Path_

strProperties = "displayname " & .displayname & vbcrlf

strProperties = strProperties & "is class: " & .isClass & vbcrlf

strProperties = strProperties & "is singleton: " & .IsSingleton & vbcrlf

strProperties = strProperties & "namespace: " & .namespace & vbcrlf

strProperties = strProperties & "parentNamespace: " & .parentNamespace & vbcrlf

strProperties = strProperties & "path: " & .path & vbcrlf

strProperties = strProperties & "relPath: " & .relpath & vbcrlf

strProperties = strProperties & "server: " & .server & vbcrlf

WScript.Echo "keys: " & .keys.count

End With

Once you have access to the SWbemObjectPath object, you can access any of the properties or
methods directly. This is when using the With End With statement is so helpful—it avoids the
confusion of the double label.

ObjectPathProperties.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strClass = "'Win32_logicalDisk'"

wmiQuery = "Select * from meta_Class where __this ISA " & strClass

Set objWMIService = getObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "CLASS: " & objItem.path_.Class & " has " & _

objItem.properties_.count & " properties and " & _

objItem.qualifiers_.count & " qualifiers."

WScript.Echo "PROPERTIES:"

For Each b In objItem.properties_

If IsArray(b) Then

wscript.echo b.name & " is an Array." & _

vbcrlf & "The properties are: " & Join (b, ",")

End if

WScript.Echo vbtab & b.name

76 Part II: WMI Queries and Events
Next

WScript.Echo "QUALIFIERS:"

For Each a In objItem.qualifiers_

If IsArray(a) Then

wscript.echo vbtab & a.name & " is an array" & _

vbcrlf & vbtab & "The Properties are: " & Join(a, ",")

Else

WScript.Echo vbtab & a.name & " = " & objItem.qualifiers_.item(a.name)

End If

Next

WScript.Echo "OBJECT PATH PROPERTIES: "

With objItem.Path_

strProperties = "displayname " & .displayname & vbcrlf

strProperties = strProperties & "is class: " & .isClass & vbcrlf

strProperties = strProperties & "is singleton: " & .IsSingleton & vbcrlf

strProperties = strProperties & "namespace: " & .namespace & vbcrlf

strProperties = strProperties & "parentNamespace: " & .parentNamespace & vbcrlf

strProperties = strProperties & "path: " & .path & vbcrlf

strProperties = strProperties & "relPath: " & .relpath & vbcrlf

strProperties = strProperties & "server: " & .server & vbcrlf

WScript.Echo "keys: " & .keys.count

End With

WScript.Echo strProperties

Next

Summary
This chapter discussed the basics of performing WMI queries. In it we examined the use and
the construction of the WMI moniker and looked at the different impersonation levels avail-
able to a VBScript. We looked at doing both data queries and schema queries. In relation to
data queries, we examined modifying both the Select statement and the Where clause. In rela
tion to schema queries, we looked at using the Meta_Class class. Finally, we examined the
SWbemObject and the SWbemObjectPath objects.

Quiz Yourself
Q: Which special class do you use to make schema queries?

A: The special class you can use to make schema queries is the Meta_Class class.

Q: Which method can you use to ensure you get a callback from an event query?

A: The method you can use to ensure you get a callback from an event query is the
ExecuteNotificationQuery method.

Q: When you use the IS operator, what are you evaluating?

A: When you use the IS operator, you are evaluating whether the evaluator is a null
value.

77Chapter 3: Using Basic WMI Queries
On Your Own

Lab 7 Exploring Win32_NTDomain

In this lab, you will explore the Win32_NTDomain class. This is a new class for Windows XP
and Windows Server 2003. Although this script can run on a workgroup computer running
Windows XP, the most interesting information will be obtained when your workstation has
access to the Microsoft Active Directory directory service. This script will not run on a com
puter running Microsoft Windows 2000 and earlier.

1.	 Open the WMI template script, and save it as StudentLab7.vbs. Notice that the full name
of the WMI class is not listed.

2.	 Modify the wmiQuery line so that you are making a query into the Win32_NTDomain
class. The modified line looks like the following:

wmiQuery = "Select * from win32_NTDomain"

3.	 Open the script PropertyExplorer.vbs and run it. Note: If you are not using an Integrated
Development Environment (IDE)–type script editor (such as PrimalScript), you will
want to run these scripts from the command line Cscript scripting host, and not from
the Wscript scripting host.

4.	 Type Win32_NTDomain in the input box. Make sure you clear the input box prior to
entering the class name. The script runs when you click OK.

5. The output includes all the Wscript.echo statements needed for your lab solution.

6.	 Copy the Wscript.echo statements from the output of step 4 and paste them into the For
Next loop in the WMI template. Make sure you delete all the Wscript.echo statements
that are already in the WMI template.

7. Save and run the script.

Lab 8 Using Schema Queries

In this lab, you will use a schema query to obtain information about the properties and qual
ifiers of the Win32_NTDomain class. Because the information on the cimTypes is returned in
the form of a coded decimal value, you will add a lookup routine to ensure you can under-
stand the results. You might want to refer to the article in the SDK called “WbemCimtype-
Enum” for details on all the cimTypes, their meanings, and their associated decimal values.
CimTypes are used to describe the data type of a particular property value. You will use a dic
tionary to hold the results. As mentioned earlier, you can use this information to make using
WMI in your scripts easier. Additionally, you can discover valuable information about classes
that are not documented.

78 Part II: WMI Queries and Events
1. Open the WMI template script, and save it as StudentLab8.vbs.

2.	 Declare all the variables you will need to use for this script. You will need dim a, b,
statusCode, and objDictionary.

3.	 Turn off On Error Resume Next while you are writing the script to ensure you see all the
appropriate errors. Use the comment character to do this.

4.	 Edit the wmiQuery so that you are performing a schema query using the Meta_Class
class. To limit the scope of the query, use __this and ISA while specifying the
Win32_NTDomain class. Make sure you encase the Win32_NTDomain class name in
single quotes. Your query will look something like the following:

“Select * from meta_class where __this ISA 'win32_ntdomain'”

5. Delete all the Wscript.echo commands inside the For Each Next loop.

6.	 Use the Properties_ property to count the number of properties associated with the
Win32_NTDomain class.

7.	 Use the Path_ property to print out the name of the class, and the Qualifier_ property to
count the number of qualifiers.

8.	 Use the FunLine function to underline the output. You can find this function in the
script FunLineFunction.vbs. You will add the function later in the lab, but for now, you
are simply calling the function. You can do this with a single Wscript.echo command as
shown in the following code. Place this inside the For Each Next loop:

WScript.Echo vbcrlf & "CLASS: " & objItem.path_.Class & " has " & _

objItem.properties_.count & " properties and " & _

objItem.qualifiers_.count & " qualifiers" & vbcrlf & _

funLine(objItem.Path_.Class)

9. Use Wscript.echo to print out a line to separate the properties you are going to output.

10.	 Because the Properties_ property is stored as an array, you need to use For Each Next to
loop through the array. Because some of the properties might also be arrays, use ISArray
to test each property to see if it is an array, prior to printing it out. If it is an array, use the
Join command to enable a single print of the property. If it is not an array, print out the
cimType, and use the ISArray property to see if the property has an array type. Your code
might look something like the following:

For Each b In objItem.properties_

statusCode = CStr(b.cimtype)

If IsArray(b) Then

wscript.echo vbtab & b.name & " is an array." & _

vbcrlf & vbtab & "Values are: " & Join(b, ",")

Else

WScript.Echo vbtab & b.name & ":" & vbtab & "cimType: " & statusCode _

& " is array? " & b.IsArray

End if

Next

Chapter 3: Using Basic WMI Queries 79
11.	 Use Wscript.echo to print out a line to separate the qualifiers you are going to output. You
might decide to do something like the following:

WScript.Echo "QUALIFIERS:"

12.	 Because the Qualifiers_ are stored in an array, you need to use For Each Next to walk
through the collection. Use the ISArray function to check whether the qualifier is an
array. If it is, use the Join function to put it together into a single string. If it is not stored
in an array, simply print the name of the qualifier. Following is the code to do this:

For Each a In objItem.qualifiers_

If IsArray(a) Then

wscript.echo vbtab & a.name & " is an array." & _

vbcrlf & vbtab & "Values are: " & Join (a, ",")

Else

WScript.Echo vbtab & a.name & " = " & _

objItem.qualifiers_.item(a.name)

End if

Next

13. Save the script.

14. Look over your code. Make sure you have declared all your variables.

15.	 To clean up the output, add the FunLine function. Open the script FunLineFunc
tion.vbs, copy the entire function, and paste it at the bottom of your script. It contains
the following code:

Function funLine(lineOfText)

Dim numEQs, separater, i

numEQs = Len(lineOfText) + 42

For i = 1 To numEQs

separater = separater & "="

Next

FunLine = separater

End Function

16.	 When you run the script, you will see output that looks similar to the following output
(Note: I trimmed the output considerably):

CLASS: Win32_NTDomain has 27 properties and 4 qualifiers

==

PROPERTIES:

Caption: cimType: 8 is array? False

ClientSiteName: cimType: 8 is array? False

QUALIFIERS:

dynamic = True

Locale = 1033

17.	 Now you want to add a lookup capability to translate the cimType output into something
more readable. To do this, use the subroutine subCreateDictionary from the script Sub-
DictionaryFromTxt.vbs. Open SubDictionaryFromTxt.vbs and copy everything from
the Sub line to the End Sub line. Paste it at the bottom of your StudentLab8.vbs script.

80 Part II: WMI Queries and Events
18. Save and run the script. There should be no errors.

19.	 Under the line where you defined your wmiQuery, call the subroutine. You can simply
type the name of the subroutine; you do not need to use the call command.

subCreateDictionary

20.	 Save and run the script. This time you will get an error, unless you remembered to dim
the objDictionary variable, which needs to be near the top with the other global variables
because you need access to objDictionary from outside the subroutine.

21.	 To make it easy to look up items in the dictionary, add a function that does the lookup
for you. Call it funLookUpCode, and feed it a statusCode variable. The function simply
looks up the statusCode as a dictionary item. You can place this function under the Fun-
Line function. The code for this looks like the following:

Function funLookUpCode(statusCode)

funLookUpCode = objDictionary.item(statusCode)

End Function

22. Save your work. The script should run successfully.

23.	 Now you can turn on the magic of the subroutine and function. To do this, make two
changes. First, use the cstr function to convert the cimType value to a string to ensure
ease of comparison in the dictionary and place it under the For Each b In
objItem.properties_ line of code. This line of code looks like the following:

statusCode = CStr(b.cimtype)

24.	 The second change is to feed the statuscode variable into the new function. Modify the
output line of the script so that the cimType printout now goes into the function instead
of simply printing out the b.cimtype value. This modified line of code looks like the fol
lowing:

Else

WScript.Echo vbtab & b.name & ":" & vbtab & "cimType: " & funLookUpCode(status

Code) _

& " is array? " & b.IsArray

25. Save and run the script.

Chapter 4

Using Advanced WMI Queries�

Chapter 4 covers a lot of ground. It discusses the various ways you can limit the amount of
data returned from a basic data query and examines the use of schema queries to further your
understanding of Windows Management Instrumentation (WMI). It discusses ways you can
modify both the Select statement and the Where clause. In addition, it covers the use of the
Meta_Class class and the SWbemObject and SWbemObjectPath objects. The third type of query,
the event query, is covered in Chapter 5, where we will discuss how to use event-driven scripts
to respond to various circumstances as they arise on your computer.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of using both the Select statement and the Where clause to limit the data
returned

■ Use of the WMI moniker

■ The differences between a data query, an event query, and a schema query

After you complete this chapter, you will be familiar with the following concepts:

■ How to use the ISA operator

■ Associators of and how to use associators of in a query

■ How to use references of in a query

■ How to use SWbemSink

■ The new objects available in Microsoft Windows XP and Windows Server 2003

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter04 folder.
81

82 Part II: WMI Queries and Events
Using __Class
You can limit the amount of information returned based on the __Class property. In reality,
__Class is not really a property; it is more of a pseudo property. __Class is used to refer to the
class of the WMI object. In the data returned from a WMI query, you can use this well-known
identifier in the Where clause to filter out objects that might be derived from a particular class.

Using ISA
No, I am not talking about Microsoft ISA (Internet Security and Acceleration) Server. In WMI,
there is a command called ISA. The ISA operator (it does not need to be capitalized) can be
used with data queries, schema queries, and event queries. In all three types of queries, if ISA is
needed, it is found in the Where clause to limit the scope of the query to a particular class or a
particular type of object. In the following script, ISA.vbs, I use the ISA operator to limit the
scope of the query to the Win32_ProductSoftwareFeatures class. ISA is often paired with the
__This property. The __This property identifies the target class of the query. When ISA is used
in a schema query, it signals that the query will be applied to all subclasses of the __This target.

ISA.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strClass = "'Win32_ProductSoftwareFeatures'"

wmiQuery = "Select * from meta_Class where __This ISA " & strClass

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery (wmiQuery)

For Each objItem in colItems

WScript.Echo "CLASS: " & objItem.path_.Class & " has " & _

objItem.properties_.count & " properties and " & _

objItem.qualifiers_.count & " qualifiers."

WScript.Echo "PROPERTIES:"

For Each b In objItem.properties_

If IsArray(b) Then

wscript.echo b.name & " is an Array." & _

vbcrlf & "The properties are: " & Join (b, ",")

End if

WScript.Echo vbtab & b.name

Next

'WScript.Sleep 1000

WScript.Echo "QUALIFIERS:"

For Each a In objItem.qualifiers_

'WScript.Echo a.name

If IsArray(a) Then

wscript.echo vbtab & a.name & " is an array" & _

vbcrlf & vbtab & "The Properties are: " & Join(a, ",")

Else

WScript.Echo vbtab & a.name & " = " & objItem.qualifiers_.item(a.name)

End If

'WScript.Sleep 1000

Next

Next

Chapter 4: Using Advanced WMI Queries 83
If you use the ISA operator in a data query, it retrieves embedded objects in the class hierarchy.
The result will include both the instances of the class that has the embedded objects as well as
the objects that are derived from the superclass. It is important to note that the instances of
the class need not be derived from the superclass, but the embedded objects should be.

Scripting API Objects
In this section we will look at the scripting application programming interface (API) objects
that exist for obtaining information from WMI. What’s most important are the names of the
objects that are returned when you perform different operations in the scripts. For example, if
you submit an ExecQuery into WMI, a SWbemServices object is returned. Once you have the
SWbemServices object, you are able to use it to perform a variety of tasks. Let’s look at the
SWbemServices object first.

SWbemServices

SWbemServices is used to perform many different operations against WMI namespaces. When
you use the winmgmts moniker to make a connection into WMI, you are using an SWbemSer
vices object, which comes back from the connection. When you use ExecQuery to return a col
lection of information from WMI, you are using the ExecQuery method from the
SWbemServices object. Table A-1 (in Appendix A) lists all the methods available through
SWbemServices. In Chapter 3, we looked at several of the methods of SWbemServices because it
is used for the most basic types of WMI queries. In this chapter, we look at many of the other
methods.

Using the associators of Command
The associators of command is used to bring back instances of classes that are associated with
a particular source. The instances that are returned are called endpoints. An endpoint is
returned for each association between it and the source object. Associations are the ways
objects are related to one another. For example, one WMI class is called Win32_NTDomain.
Another class is called Win32_Group and yet another is called Win32_GroupInDomain. The
last class, as you might suspect, is a class that associates groups with domains. An example of
using associators of is shown in the GroupsInDomain.vbs script.

GroupsInDomain.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "ASSOCIATORS OF {win32_ntdomain.name=""domain: nwtraders""}" _

& " where assocClass =win32_groupInDomain"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery (wmiQuery)

For Each objItem in colItems

With objItem

84 Part II: WMI Queries and Events
Wscript.Echo .name

WScript.echo vbtab & "sid type: " & .sidType & vbtab & .sid

If .description = "" Then ' .description might be empty, but is not null

else

WScript.echo vbtab & .description

End If

End with

Next

When you use the associators of query, as in Figure 4-1, it is common to specify two classes, as
shown in the script GroupsInDomain.vbs. I used both the Win32_NTDomain class and the
Win32_GroupInDomain class.

Figure 4-1 Associations of Win32_NTDomain

The first class identifies a specific domain, and the second class obtains the groups that reside
in that domain. Some classes support an associators of query and do not require two classes
because they are inherently associated with other classes. A good example is the
Win32_LogonSession class, which is used to describe the logon session that is associated with
a particular logged-on user. To do an associators of query with Win32_LogonSession you first
must identify a particular logon session. Because you might not happen to know the name of
a specific logon session off the top of your head, you can use the script ListLogonSessions.vbs
first to obtain the information.

ListLogonSessions.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_logonsession"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery (wmiQuery)

Chapter 4: Using Advanced WMI Queries 85
For Each objItem in colItems

Wscript.echo "AuthenticationPackage:" & objItem.AuthenticationPackage

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "Description:" & objItem.Description

Wscript.echo "InstallDate:" & objItem.InstallDate

Wscript.echo "LogonId:" & objItem.LogonId

Wscript.echo "LogonType:" & objItem.LogonType

Wscript.echo "Name:" & objItem.Name

Wscript.echo "StartTime:" & objItem.StartTime

Wscript.echo "Status:" & objItem.Status

WScript.Echo ""

Next

The output from this script is not extremely helpful—but it returns enough information to get
you started in your quest for a specific logon session. Following is a portion of the output.

AuthenticationPackage:Negotiate

Caption:

Description:

InstallDate:

LogonId:999

LogonType:0

Name:

StartTime:20050408181216.852140-240

Status:

A couple of interesting things are shown here. The LogonType property is returned as a zero
(0). The software development kit (SDK) does not tell you what a logonType of 0 really is. The
query does tell you that logonID 999 is associated with the logonType of 0. This is where the
associators of query comes into play. In the script AssociatorsOfLogonSession.vbs you gain a
powerful ally that can help you examine the users logged on to the computer. When you run
the script AssociatorsOfLogonSession.vbs, you find that the logon ID 999 is used for the sys
tem process. You can extrapolate from this information that a logon type of 0 is a system
logon.

AssociatorsOfLogonSession.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "ASSOCIATORS OF {win32_LogonSession.LogonId=""999""}"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery (wmiQuery)

For Each objItem in colItems

Wscript.Echo "Name: " & objItem.name

Wscript.Echo ": " & objItem.path_

Next

Using the references of Command
A references of type of query is used to return all association instances that refer to a particular
source instance. As you can see in the script ReferencesOfLogonSession.vbs, association

86 Part II: WMI Queries and Events
instances that refer to a logon session that has a LogonID property of 999 are returned. The
instances that come back as a result of the references of query are intervening association instances
rather than the actual endpoint instances. The associators of query retrieves the endpoint
instances. Many times there is no difference in the information that is returned. In the scripts
AssociatorsOfLogonSession.vbs and ReferencesOfLogonSession.vbs the returned results are
equivalent. However, the difference in the way the output is formatted might influence
whether you use a references of or associators of query. The other factor is whether you need
returned an intervening association instance or an actual endpoint instance.

ReferencesOfLogonSession.vbs

strComputer = "."

wmiNS = "\root\cimv2"

intLogon = """999""}"

wmiQuery = "References of {win32_LogonSession.LogonId=" & intLogon

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery (wmiQuery)

For Each objItem in colItems

Wscript.Echo ": " & objItem.path_

Next

Modifying the Where clause

The references of query works similarly to the Select query examined in Chapter 3—you can
make modifications to the Where clause. You can specify the following four keywords in the
Where clause:

■ ClassDefsOnly

■ requiredQualifier

■ resultClass

■ role

ClassDefsOnly

ClassDefsOnly causes the query to come back with class definition objects rather than the
actual association class instance. Don’t let the terminology confuse you. A ClassDefsOnly
clause does not cause the query to return something that actually tells you what the class
does—it is not that kind of definition. When you run the query, what comes back could be
described as a template of the class in memory. You do not see the template, but you do have
a hook to the template. So, why would you be interested in doing such a thing? You can use
the class definition object with the SpawnDerivedClass_ method of the SWbemObject to create
a class that is derived from the class definition object. This means that if I have a
Win32_LogonSession class in memory, I can create a new instance of the class and modify it to
meet my needs. The object that comes back from using SpawnDerivedClass_ is a subclass of
the current object.

Chapter 4: Using Advanced WMI Queries 87
requiredQualifier

The requiredQualifier keyword tells WMI that the association object that comes back from the
query must include the specified qualifier. Only associated instances containing the specified
qualifier are returned in the result set. In the script AssociatorsOfNetAdapterRequiredQuali
fier.vbs I do an associators of query to find items related to the network adapter on the com
puter. The requiredQualifier keyword goes into the Where clause. The really interesting thing
about the AssociatorsOfNetAdapterRequiredQualifier.vbs script is the use of the Path_ prop
erty inside the For Each Next loop. I need to use this so I can print out each of the classes asso
ciated with the network adapter. The problem is that all the classes do not have the same
properties, but all the classes have a path.

AssociatorsOfNetAdapterRequiredQualifier.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery =

"ASSOCIATORS OF {win32_networkadapter.deviceID='1'} where requiredQualifier = locale"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.execquery(wmiQuery)

For Each objItem in colItems

Wscript.Echo objItem.path_.relpath

Next

resultClass

When resultClass is used in the Where clause of a references of query, the object must belong to
the specified class, or it must be derived from a specified class. This is useful when you need
to filter out the results of a query based on the type of object being returned. In the script
AssociatorsOfNetAdapterResultClass.vbs, I filter out everything associated with the network
card and get back only the system drivers. I perform a query of all the properties of all the sys
tem drivers in the Win32_systemDriver.vbs script, which can be found in the Scripts\Supple-
mental Scripts\cimv2 folder on the accompanying CD. This script returns more than 4000
lines of information on my laptop. The Win32_NetworkAdapter.vbs script in the Scripts\
Supplemental Scripts\cimv2 folder returns more than 700 lines of information on my laptop
because it picks up the virtual adapters, Bluetooth adapters, wireless adapters, and who
knows what else. Rather than having to sort through nearly 4000 lines of information, it
would be better simply to get the information I am looking for—that is, the drivers associated
with my wired Ethernet card. The code to do this is shown in the AssociatorsOfNetAdapter-
ResultClass.vbs script. Keep in mind that only the properties from the Win32_SystemDriver
class are available—the properties from Win32_NetAdapter are not.

AssociatorsOfNetAdapterResultClass.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery =

"ASSOCIATORS OF {win32_networkadapter.deviceID='1'} where resultClass = Win32_SystemDriver"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

88 Part II: WMI Queries and Events
Set colItems = objWMIService.execquery(wmiQuery)

For Each objItem in colItems

With objItem

Wscript.Echo .path_.relpath

WScript.Echo vbtab & .displayName & vbcrlf & vbtab & .pathName

End with

Next

role

The last way to filter out references of queries in the Where clause is to use the role keyword. The
role keyword is used to specify associations that fill a particular role.

Using the ExecQuery Method
You will use the ExecQuery method many times. Remember, methods do something, so you
can use the ExecQuery method to retrieve a collection of objects from WMI. The objects are
returned as an SWbemObjectSet collection. In this section, we examine the use of ExecQuery,
the flags used to modify it, and the special considerations for working with an SWbemObject-
Set collection.

Returning an SWbemObjectSet Collection

It is important to remember that the ExecQuery method returns an SWbemObjectSet collection.
Because the SWbemObjectSet is a collection, you have to deal with the data returned as a col
lection rather than as a simple string value. This is true even if the query returns only a single
instance. To work with the collection, use For Each Next in most cases because it is the sim
plest way to singularize an instance from within a collection.

Iflags

You can specify several flags with the ExecQuery method. A listing of the available SWbemOb
jectIflags is contained in Table A-2 in Appendix A. If no flags are specified, the default value for
Iflags is the wbemFlagReturnImmediately flag, which tells WMI to return the call immediately.
This is the opposite behavior of the wbemFlagReturnWhenComplete flag, which tells WMI to
wait until the query is complete before returning any information. Control of this behavior is
fundamentally tied to the way in which you anticipate utilizing your data or handling any
errors that might arise during execution of your script. I discuss this in the following section
on errors.

An example of using Iflags is shown in the script SystemBios.vbs. Note that you can specify the
hexadecimal value codes directly in the ExecQuery statement. You could also define constants
and assign values to them. What you cannot do is use the flag names directly in the script
without the intervening step of creating them as constants.

Chapter 4: Using Advanced WMI Queries 89
SystemBios.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_SystemBIOS"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery,"wql",&h10 + &h20)

For Each objItem in colItems

WScript.Echo "GroupComponent: " & objItem.GroupComponent

WScript.Echo "PartComponent: " & objItem.PartComponent

WScript.Echo

Next

Error Codes

WMI does not consider it an error for a query to return an empty result set. You might not
think the query was successful, but as far as WMI is concerned, if it runs without errors, the
query is fine. This is just one thing to keep in mind when evaluating error codes returned by
the ExecQuery method. You must be aware of the peculiarities of any return flag you set. The
wbemFlagReturnImmediately flag does not set the error object until an attempt to access the
object set is made. This means you have to handle the error as part of the access mechanism.
On the other hand, the wbemFlagReturnWhenComplete sets the error object when the Exec-
Query method is actually called. This enables you to detect and handle the error much earlier
in the script, which can be more efficient.

Using the Get Method
The Get method of the SWbemServices object retrieves a particular instance of an object. The
object must reside in the namespace associated with the current SWbemServices object. The
advantage of using the Get method is that you need not use the For Each Next statement to iter
ate through a collection as you must do with the ExecQuery method. The disadvantage of
using the Get method is that you must be able to uniquely identify the instance to which you
wish to connect. You must know the key property of the class you are using, and you must
know the exact value being reported for that property. If you have this information, using the
Get method is easy. If you do not know this information, writing a working script is an exercise
in futility.

In the script ProxyServerInfo.vbs I connect to a computer identified by the variable StrServer-
Name. As I am supplying values to the WMI query, I have to encase the computer name with
three sets of quotation marks. You might wonder how I knew three sets of quotation marks
were required, and the answer is simple—I just kept typing until the query worked. Addition-
ally, whereas the value for the variable strComputer works for the moniker connection, it does
not work as the key value for the Get method. Once the proxy server information is displayed,
I call the SetProxySetting method. The interesting thing about the SetProxySetting method is
that it requires two parameters to be supplied: the proxy name and the port to use for the
proxy server.

90 Part II: WMI Queries and Events
Turning Off the Proxy Server If you call the SetProxySetting method and assign the val
ues to NULL, you turn off the use of the proxy server .errRTN = objItem.SetProxySet
ting(null,null).

ProxyServerInfo.vbs

strComputer = "."

strServerName = """Mred.microsoft.com"""

wmiNS = "\root\cimv2"

wmiQuery = "win32_proxy.ServerName=" & strServerName

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

WScript.Echo "current proxy settings on: " & strServerName

Wscript.Echo "ProxyPortNumber: " & objItem.ProxyPortNumber

Wscript.Echo "ProxyServer: " & objItem.ProxyServer

'now call a method to change these settings

errRTN = objItem.SetProxySetting("myProxyServer","80")

subCheckError

Sub subCheckError

If errRTN = 0 Then

WScript.Echo "New settings were accepted"

Else

WScript.Echo "an error occurred. It was: " & errRTN

End If

End sub

wbemFlagUseAmendedQualifiers

Only one Iflag is used with the Get method and it’s called wbemFlagUseAmendedQualifiers. The
wbemFlagUseAmendedQualifiers flag is used to retrieve localized data from WMI. The base
classes are language neutral and WMI allows multiple localized versions of the same class to
be stored in the repository. The language-specific class information is stored in a child
namespace under the same namespace that contains the language-neutral class. To retrieve
this language-specific information, you must use the wbemFlagUseAmendedQualifiers Iflag.

SWbemLastError

The SWbemLastError object is used to check error objects for WMI operations. It has both
properties and methods that are the same as the SWbemObject object. The difference is that
these contain error information instead of class information.

The SWbemLastError object is used to inspect error information that is associated with a par
ticular WMI call. If error information is not available, SWbemLastError object is created. If the
SWbemLastError object is created, the error is returned and the status is reset. If you then
attempt to create the object again, it will once again fail until additional errors are generated.

Chapter 4: Using Advanced WMI Queries 91
It is possible to create an asynchronous call to SWbemLastError, but it can be returned only by
an onCompleted event from SWbemSink.

Three methods are used with the SWbemLastError object. These are listed in Table 4-1.

Table 4-1 SWbemLastError Methods

Method Description

Clone_ Makes a copy of the current object

CompareTo_ Tests two objects for equality

GetObjectText_	 Returns a text representation of the object in Managed Object Format
(MOF) syntax

The GetObjectText_ method is rather useful. It returns a MOF syntax description of a WMI
object. The script DisplayMOF.vbs illustrates how to use this method. If you run this script,
you will find that it gives you information similar to that found in the SDK—albeit not as easy
to read. The MOF description of the class tells you data types, privileges required, key values,
and much more.

DisplayMOF.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "win32_process"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.Get(wmiQuery)

objMOF = objItem.GetObjectText_

WScript.Echo(objMOF)

Although the SWbemLastError methods can be exciting, the properties are most useful to the
scripter. Interestingly enough, there are only two properties, but they are very handy. The
Path_ property contains an SWbemObjectPath object, which we examine in detail in a later sec
tion. The SWbemObjectPath object gives you access to a number of useful properties such as
keys and namespaces. The Properties_ property of the SWbemLastError object contains an
SWbemPropertySet object, which we examine later as well. The SWbemPropertySet object is
exciting because it is a collection of other objects. The properties of SWbemLastError are listed
in Table 4-2.

Table 4-2 SWbemLastError Properties

Property Description

Path_ Contains an SWbemObjectPath object.

Properties_	 The collection of properties of the SWbemLastError object. This is an
SWbemPropertySet object.

SWbemObject

An SWbemObject object is used to represent either a class definition or an instance of a WMI
object. Two different types of properties and methods can be used with SWbemObject: the

92 Part II: WMI Queries and Events
generic properties and methods and the specific properties and methods of the underlying
object as a dynamic automation property or method. The actual names and types of these
properties and methods depend on the underlying WMI object.

The SWbemObject object is always in process, and you do not need to create an instance of this
object prior to using it. Keep in mind that write operations affect the local copy of the object.
Use the Put_ method of the SWbemObject to actually modify an existing object. Changes are
not written until you call SWbemObject.Put_.

Generic method and property names always end in a trailing underscore. This is so you can
easily tell the difference between a dynamic WMI method or property and one from the
underlying object.

Creating an Empty Class

You can create a new empty class to use with SWbemObject by using the Get method of the
SWbemService object. The trick is to use an empty path parameter. When you do this, you get
back an empty SWbemObject object, which becomes a class. You can then supply a class name
for the Class property of the SWbemObjectPath object that comes back when you use the Path_
call. Once you do this, you simply add properties to the new class by using the Properties_
method. You can then use GetObject on the new class. The SWbemObject object that represents
the class must use the Put_ command to put it into the WMI repository.

SWbemObjectPath

The SWbemObjectPath object is used to work with the path of a WMI object. You can use it
both to validate the path to an object and to construct the path to an object. Use the CreateOb
ject command to create an instance of the SWbemObjectPath object. Once you have an instance
of the SWbemObjectPath object, you have two methods and 13 properties available. The meth
ods are listed in Table 4-3.

Table 4-3 SWbemObjectPath Methods

Method Description

SetAsClass Forces the path to address a WMI class

SetAsSingleton Forces the path to address a singleton WMI instance

Complementing the two methods listed in Table 4-3 are 13 properties, which are detailed in
Table A-3 in Appendix A. These properties can reveal a lot of information about the WMI
object with which you are working. Displayname, Path, and Relpath are three properties I have
found particularly useful.

The Authority property of the SWbemObjectPath object holds a string that represents the
authority component of the object path. This authority string is the same as the Authority
property associated with the SWbemLocator ConnectServer method. If the Authority property

Chapter 4: Using Advanced WMI Queries 93
begins with the word Kerberos, you are using Kerberos authentication, and this parameter will
contain a Kerberos principal name. If the Authority parameter has any other value, you are
using NTLM authentication, and the field will possess an NTLM domain name. If the prop
erty is blank, the system will negotiate with Component Object Model (COM) to determine
whether to use NTLM or Kerberos. This does not work for a WMI script running locally
because it uses the default DCOM impersonation settings to impersonate the logged-on user.

IsSingleton

The IsSingleton property is a Boolean value that indicates whether the path object represents a
singleton instance. A singleton instance in WMI is an instance of a class that can never have
more than one instance. The property is read-only, so you cannot flip a bit and create the abil
ity to have another instance of a singleton class.

Keys Property

The Keys property of the SWbemObjectPath object is actually a SWbemNamedValueSet object.
To work with the Keys property of the SWbemObjectPath object, you have to do two things.
First, you have to retrieve the property, which is simple enough. But next you have to treat the
property as an SWbemNamedValueSet object. This is where things begin to get a little sticky
because an SWbemNamedValueSet object is a collection of SWbemNamedValue objects.

An SWbemNamedValue object is called a single named value that belongs to the SWbemNamed-
ValueSet collection object. You see, the SWbemNamedValueSet is actually a set of items, which
is a collection. Additionally, because the items in the collection are SWbemNamedValue
objects, you can use only the properties available to SWbemNamedValue objects. Only two
properties are available in this context: Name and Value, both of which are self-explanatory.

You can use the methods and properties from SWbemNamedValueSet to provide additional
information to WMI when you are making calls, or you can use the methods and properties to
obtain information when receiving information from WMI. If you were making a call into an
SWbemServices object, you would need to specify values for the SWbemNamedValueSet objects
to enable WMI to make the proper connection. Additionally, if you want to receive the keys
information about a class, you need to use SWbemNamedValueSet and SWbemNamedValue
objects to specify the name of the key. You can add the extra information to the SWbemNamed-
ValueSet object and send the object with the call as a parameter. You can use CreateObject
when you do this. The SWbemNamedValueSet object has the methods listed in Table A-4 in
Appendix A. The SWbemNamedValueSet object has only one property—the Count property.

Locale

The Locale property of the SWbemObjectPath object is used to identify the locale of the object
path. When you use the Locale property, it is used as part of a standalone SWbemObjectPath
object and it is both read and write. It can also be used to set the locale component of the WMI
moniker. If you use the Locale property through an SWbemObject.Property_ property, it is read-

94 Part II: WMI Queries and Events
only, and it will report the value of the locale used in binding the namespace from the object
that returned the property. All of the Microsoft locale identifiers are in the form of MS_xxx,
such as MS_409 for American English. The system locale settings can be retrieved with
Microsoft Visual Basic Scripting Edition (VBScript) by using the GetLocale function built into
VBScript, but they report different numbers from the numbers reported by the Locale prop
erty (for example, 1033 for American English). In reality, the reported numbers are not differ
ent numbers but are different representations of the same number—1033 is base 10, and 409
is the same number in hexadecimal.

Namespace

The Namespace property of the SWbemObjectPath object holds the name of the namespace
associated with the namespace part of the object path. You can use this property to see where
in the WMI schema an object resides. This can assist you in creating scripts that do more than
just work in the default namespace.

Security_

The Security_ property of the SWbemObjectPath object is used to read or set the security com
ponents of an object path. It is not used to set the security attributes of the SWbemObjectPath
object, but rather to set the security of the object path. It is used to represent the security com
ponents of the path for an SWbemLocator object. This property is an SWbemSecurity object.
Notice that when you are working with this property, three different objects are involved: an
SWbemLocator object, an SWbemObjectPath object, and an SWbemSecurity object. If you set the
Security_ property of an SWbemObjectPath object to NULL, it will grant unlimited access to
everyone all the time.

SWbemObjectSet

An SWbemObjectSet object is a collection of SWbemObject objects. An SWbemObjectSet object is
returned when you call any of the following methods from SWbemObject, the building blocks
of WMI:

■ Associators_

■ Instances_

■ References_

■ SubClasses_

An SWbemObjectSet object is returned when you call any of the following methods from
SWbemServices, the WMI service itself:

■ AssociatorsOf

■ ExecQuery

Chapter 4: Using Advanced WMI Queries 95
■ InstancesOf

■ ReferencesTo

■ SubClassesOf

The SWbemObjectSet object does not support using an Add or Remove method. The only
method is the I method, which returns an SWbemObject object from the collection. The two
properties available are Count and Security_.

SWbemProperty

The SWbemProperty object is used to represent a single WMI property of a managed object.
Although it does not have any methods, it does have some very useful properties. The proper-
ties are listed in Table A-5 in Appendix A.

CIMType

The CIMType property of the SWbemProperty object is returned as an integer that must be
parsed to reveal useful information. When you retrieve the CIMType of an SWbemProperty
object, it comes back as a WbemCimTypeEnum constant. You can look up the value in Table
A-6 in Appendix A to determine the CIMType of an object.

Qualifiers_

The Qualifiers_ property of the SWbemProperty object returns an SWbemQualifierSet object
that is a collection of qualifiers for the property. This is a read-only property. The SWbemQual
ifierSet object is a collection of SWbemQualifier objects. Several methods can be used with an
SWbemQualifierSet object, and these are listed in Table A-7 in Appendix A. Only one property
is available with the SWbemQualifierSet object and that is the Count property.

SWbemQualifier

The SWbemQualifier objects are listed in Table A-8 of Appendix A. They are used to represent
a single qualifier of a WMI class, instance, property, or method.

SWbemPropertySet

The SWbemPropertySet object is another one of those collection-type objects—it is a collection
of SWbemProperty objects. It has three methods and one property. As you have observed in
this chapter, most objects support the Count property at a minimum, as is the case here. You
can add items to the collection by using the Add method, and you can retrieve items from the
collection by using the Item method. The final method is the Remove method, which—you
guessed it—removes an item from the collection. The collection of SWbemProperty objects that
makes up an SWbemPropertySet collection is used to describe the properties of a single WMI
class or a single instance of a WMI class.

96 Part II: WMI Queries and Events
SWbemSink

SWbemSink is used by client applications to receive the results of either an asynchronous oper
ation or an event notification. If you need to perform an asynchronous WMI query, first you
must create an instance of the SWbemSink object and then pass it as a parameter to the query.
If you are creating an event notification script, the SWbemSink object is triggered when either
a status update or a result is returned. Only one method is available with the SWbemSink
object, the Cancel method. Four properties, listed in Table 4-4, can be used with this object.

Table 4-4 SWbemSink Properties

Event Description

onCompleted Triggered when an asynchronous operation is complete

onObjectPut Triggered after an asynchronous put operation

onObjectReady Triggered when an object provided by an asynchronous call is available

onProgress Triggered to provide the status of an asynchronous operation

onCompleted

The onCompleted event of the SWbemSink object occurs when an asynchronous call com
pletes. A script or application receiving this event is able to interpret the result of an asynchro
nous operation or determine the reason for failure from the error information. The
onCompleted event contains three parameters: the result of the asynchronous method, an
error object if the call fails, and an objWbemAsyncContext parameter that is in reality an
SWbemNamedValueSet object that is passed to the original asynchronous call. This parameter
can be used to identify the origin of the asynchronous call that trigged the event. Three errors
can be returned as a result of an asynchronous call. These errors are listed in Table 4-5.

Table 4-5 onCompleted Error Messages

Error Error Number Meaning

wbemErrFailed 0x80041001 Unspecified error

wbemErrOutOfMemory 0x80041006 Not enough memory to complete the opera-
tion

wbemErrTransportFailure 0x80041015 Networking error occurred, preventing normal
operation

Introducing New Objects in Windows XP and Windows
Server 2003

Several new objects were added for Windows XP and for Windows Server 2003. Some of
these objects, such as the SWbemDateTime object, make life easier by formatting data in a
more usable fashion. In other cases, such as with the SWbemRefresher object, the object pro
vides exciting new capabilities for scripts. All together, there are five new objects you can use

Chapter 4: Using Advanced WMI Queries 97
in Windows XP and in Windows Server 2003 that were not available in earlier editions of the
operating system

SWbemDateTime

The SWbemDateTime object is new in Windows XP and Windows Server 2003. This object is
used to parse Common Information Model (CIM) datetime values. The datetime value is a
fixed-length string that represents either a date or a time interval. The WMI datetime intervals
have four trailing digits. The datetime does not allow the use of wildcards or padding to leave
fields blank. It is capable of using either the VT_Date or a FILETIME value. SWbemDateTime
can be formatted using a local time value or a Universal Time Coordinate (UTC) value. Any
numeric field can have a wildcard value specified if the IsInterval property is set to false. A field
that uses a wildcard must use asterisks in the entire field. Each property has a corresponding
Boolean value. If the Boolean value is set to false, the value is interpreted as an interval rather
than a specific number. If the interval is used in the CIM datetime value, the isInterval is also
set to true. This is not the default behavior.

SWbemObjectEx

SWbemObjectEx provides some new and exciting functionality for the SWbemObject. Just like
the SWbemObject, the methods of the SWbemObjectEx object can be used by all WMI objects.
There are two just two methods: GetText_ and Refresh_. The GetText_ method returns a text file
that shows the contents of an object in Extensible Markup Language (XML). Refresh_ is used
to refresh the data in an object. The SystemProperties_ property is an SWbemPropertySet object
that contains the collection of system properties that apply to SWbemObjectEx.

SWbemRefresher

The SWbemRefresher object is another container object that can be used to refresh the data for
all objects that are added to the refresher object. Single instances and instance enumerators
can be added or removed from the container. Sets of added objects are each represented by an
SWbemRefreshableItem instance that can be treated as a collection. If the provider of the
instance data is not a high-performance interface, you can still use the SWbemRefresher object
to update the data when you use the refresh call. If the data is retrieved through a high-perfor
mance interface, you can use the AutoReconnect property to reestablish any broken connec
tions to the data provider. If you need to carry out a refresh operation, you can use either the
Refresh method from the SWbemRefresher object or you can use the Refresh_ method from
SWbemObjectEx.

Several methods are provided by the SWbemRefresher object. These methods are listed in
Table A-9 in Appendix A.

In addition to the standard Count property, the SWbemRefresher object also defines the
AutoReconnect property. When the AutoReconnect property is set to true, the refresher object

98 Part II: WMI Queries and Events
automatically reconnects to a remote provider if the connection is broken. This works only if
the provider is high performance. If the provider is not high performance, the AutoReconnect
property has no effect on the SWbemRefresher object because it will never reconnect.

SWbemRefreshableItem

The SWbemRefreshableItem object is a single item in an SWbemRefresher object. You are able to
obtain an SWbemRefreshableItem object by using either the Add or the AddEnum method of the
SWbemRefresher object. One method is associated with the SWbemRefreshableItem object
called the Remove method. It is used to remove an item from the refresher object.

There are also five properties associated with the SWbemRefreshableItem object. These proper-
ties are listed in the Table A-10 in Appendix A.

SWbemServicesEx

SWbemServicesEx extends the functionality of the SWbemServices object. There are two new
methods in this object: the Put method and the PutAsync method. Both methods save an
object to the namespace that is bound to the SWbemServicesEx namespace.

Summary
In this chapter, we examined many of the WMI objects available to you. First we looked at the
SWbemServices object; then we worked our way through to the SWbemServicesEx object, which
is new in Windows XP and Windows Server 2003. Knowing how to use these objects properly
can greatly enhance the security and reliability of your scripts.

Quiz Yourself
Q: What is the ISA operator used for in a WMI script?

A: The ISA operator is used to filter out results based on the class of the object.

Q: Why would you need to use wbemFlagUseAmendedQualifiers in a WMI script?

A: You need to use wbemFlagUseAmendedQualifiers in a WMI script if you must access
localization information.

Q: Name a new helper object in Windows XP and Windows Server 2003 that is capa
ble of translating a UTC date format into something more understandable.

A: The new helper object in Windows XP and Windows Server 2003 called SWbem-
DateTime is capable of translating a UTC date format into a more easily understood
format.

Chapter 4: Using Advanced WMI Queries 99

Next

Next

On Your Own

Lab 9 Working with the AutoDiscovery Process

In this lab, you will work with the SWbemDateTime object to incorporate it into a script to
deliver a more readable date string. In doing so, you will look at the AutoDiscovery/AutoPurge
(ADAP) status. ADAP is a process that runs regularly to convert Perfmon counters into WMI
classes. Checking the status of ADAP is one of the first steps in troubleshooting these types of
classes.

1. Open the WMITemplate script, and save it as StudentLab9.vbs.

2.	 Change the wmiNS value so that it points to “\root\default” namespace instead of the
root\cimv2 namespace. The modified wmiNS line will look like the following:

wmiNS = "\root\default"

3.	 Modify the wmiQuery so that it selects everything from the __AdapStatus WMI class. The
modified wmiQuery line will look like the following:

wmiQuery = "Select * from __adapStatus"

4.	 Declare a variable to hold the SWbemDateTime object. You can simply call it SWbem-
DateTime if you wish.

5.	 Under the GetObject command that makes the WMI moniker connection, use the vari
able you declared in step 4 to hold an instance of the SWbemDateTime object. Use the
CreateObject command because this object is not already in memory. Your line of code
will look like the following:

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

6.	 Delete all the Wscript.Echo commands from inside the For Each Next loop. The loop will
look like the following after you delete the Wscript.Echo commands:

For Each objItem in colItems

7.	 Add a With objItem End With statement inside the For Each Next loop. The loop will now
look like the following:

For Each objItem in colItems

With objItem

End With

8.	 Turn off the On Error Resume Next statement. Save and run the script. You will not get
any output, but you should not receive any errors either.

100 Part II: WMI Queries and Events
9.	 Assign the .LastStartTime property to the Value property of the SWbemDateTime object.
Your command will look like the following:

objSWbemDateTime.Value = .LastStartTime

10. Use the GetVarDate method of the SWbemDateTime object to translate the UTC date into
something readable. Use a variable called strLastStart to hold the translated timestamp.

strLastStart = "The last start time was: " & objSWbemDateTime.GetVarDate

11. Declare (dim) the strLastStart variable with the other variables at the top of the script.

12. Recycle the Value property of the SWbemDateTime object by assigning a new property to
it. This time it is the .LastStopTime property from the __AdapStatus class.

objSWbemDateTime.Value = .LastStopTime

13. Dim the strLastStop variable at the top of the script.

14. Use the GetVarDate method to translate the UTC date. Assign the value to the strLastStop
variable.

15. Save and run the script. You should still see no output or errors.

16. Declare a new variable called strStatus to hold the .Status property. Assign the .Status
property to the new variable:

strStatus = .Status

17. Add a single Wscript.Echo command under the For Each Next loop that prints out the val
ues contained in the three variables. It will look something like the following:

WScript.Echo "ADAP Status: " & strStatus & strLastStart & strLastStop

18. Clean up the output a little. Dim a new variable called myTab.

19. Assign a carriage return and a tab to myTab. You can place this under the variable decla
ration. It will look like the following:

mytab = vbcrlf & vbtab

20. Put myTab & in front of each of the “The last start” and “The last stop” statements. It will
look like the following:

With objItem

objSWbemDateTime.Value = .LastStartTime

strLastStart = myTab & "The last start time was: " &_ objSWbemDateTime.GetVarDate

objSWbemDateTime.Value = .LastStopTime

strLastStop = myTab & "The last Stop time was: " &_ objSWbemDateTime.GetVarDate

strStatus = .Status

End With

Chapter 4: Using Advanced WMI Queries 101
21. Now run the script. The output should be much nicer. As extra credit, look up
__AdapStatus in the SDK and see what the .Status property means. A table lists the val
ues. You might want to create a function that translates this for you. I have included such
a function in Lab9SolutionExtra.vbs.

22. If you want to see what the UTC time format actually looks like, add the following com
mand directly under the With objItem command: Wscript.Echo.LastStartTime.

Lab 10 Using the Get Method for Inventory Types of Data

In this lab, you will use the Get method to obtain useful inventory types of data from WMI.
You will connect to the Win32_ComputerSystem WMI class to retrieve this information.

1. Open the WMI template script, and save it as StudentLab10.vbs.

2.	 Locate the Key property of Win32_ComputerSystem. You can look it up in the SDK, use
Wbemtest.exe, or use the GetClassKey.vbs script from the Lab10 folder on the accompa
nying CD. It should tell you that the Name property is the key.

3.	 Declare a new variable that holds the name of your computer by using the Dim com
mand. Call the variable strName.

4. Delete the variable colItems because you will not need it in this script.

5. Turn off On Error Resume Next by inserting a single quote in front of it.

6.	 Under the wmiNS= “\root\cimv2” line, assign the name of your computer to the variable
strName. Make sure you use a set of double quotes and single quotes as shown in the fol
lowing code sample:

strName = "'TYPE_IN_YOUR_COMPUTER_NAME_HERE'"

7.	 Remove the Select * from section from the wmiQuery. Add ComputerSystem.Name after the
Win32_ Portion. Make it equal to strName. The modified line will look like the following:

wmiQuery = "win32_ComputerSystem.name=" & strName

8.	 Modify the ExecQuery line. Change the variable colItems to be objItem. Also, change the
query type from an ExecQuery to a Get. The modified line looks like the following:

Set objItem = objWMIService.Get(wmiQuery)

9. Remove the For Each Next loop—but not the Wscript.Echo statements.

10. Echo out the value of the following properties: Name, Manufacturer, Model, Total-
PhysicalMemory, and UserName.

11. Run the script. It should work fine. For even more fun, look up FormatNumber in the
SDK and see how you can use it to clean up the output of the memory that is reported.
You can also look up Win32_ComputerSystem in the SDK to see whether you want to
report other properties.

Chapter 5

Using WMI Events

In Chapter 4, we looked at different ways to query Windows Management Instrumentation
(WMI). We examined the various objects available to scripters and discussed how the appli
cation of the objects, methods, and properties can greatly enhance your scripting experience.
In this chapter, we look at working with WMI events. By using events in your scripts, you
enable WMI to respond to certain conditions when they arise on your computer.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of writing WMI queries

■ Use of various scripting objects available for WMI

■ Use of WMI tools

After you complete this chapter, you will be familiar with the following concepts:

■ The basics of event-driven scripts

■ Use of the NextEvent keyword

■ The different types of events

■ How to create temporary events

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter05 folder.
103

104 Part II: WMI Queries and Events
Using SWbemEventSource
The SWbemEventSource object is used to retrieve events. Events are activities or occurrences
that happen on a computer system. A process starts—it generates an event. A service pauses—
it generates a different kind of event. A file is created, modified, deleted—all of which generate
events. You can receive these events by using an event query in conjunction with the ExecNo
tificationQuery method of the SWbemServices object.

You get an SWbemEventSource object when you use the ExecNotificationQuery method to make
an event query. Once you execute the query, you have access to the NextEvent method. Use
the NextEvent method to receive events as they arrive in response to the query you performed.
This might sound strange—it did to me at first. “Why am I doing a query to receive something
in the future?” The key to understanding this is to realize that you are signing up for a sub
scription in the same way you subscribe to a magazine. The next time an issue of the magazine
is published, you will receive it. The next time an event occurs that meets the criteria of your
query, you will receive it. In the script MonitorForProcessDeletion.vbs in the next subsection,
I use the variable colItems to hold what returns from executing the ExecNotificationQuery. This
is shown in the following code, which is taken from the MonitorForProcessDeletion.vbs
script.

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

NextEvent

You use the NextEvent method in a query to retrieve an event by using an event query. Only
one parameter can be specified when you use the NextEvent method, and that is the timeout
interval. This is an optional parameter, and it is specified in milliseconds. Use a -1 to tell the
call to wait forever, as shown in the following code.

Set objItem = colItems.NextEvent(-1)

Are You Seeing Timeout Errors When You Use NextEvent? If you see a timeout
error, the event did not arrive within the timeout parameter you specified when you called the
NextEvent method. You might consider increasing the timeout interval. One way to determine
whether this will help (and to avoid a lot of experimentation) is to use the default -1 parameter
and incorporate the timer function from Microsoft Visual Basic Scripting Edition (VBScript).
This will tell you rather quickly how much time you must specify for the timeout interval.

If the execution of NextEvent is successful, it returns an object that contains the requested
event. If it is not successful, or if it times out, the command comes back with a null value and
an error is raised. The error will be a wbemErrTimedOut error with a value of 0x80043001.
This parameter is written to the err object if it is raised. In the MonitorForProcessDeletion.vbs
script, you monitor running processes for the deletion of a process called Notepad.exe. To do

Chapter 5: Using WMI Events 105

Do

Loop

this, you use the ExecNotificationQuery method to run the query. In the query, specify an
__InstanceDeletionEvent (the double underscore is required), which means you will be notified
only if the event that occurs is associated with an instance being deleted. The instance you are
looking for is a Win32_Process (contained in the variable objTGT). The name of the target
instance must be Notepad.exe as specified in the variable objName.

Once the query is executed, you use a Do Loop and wait for the next event to occur. You will
not see any indication that the script is running, unless you are running it in a script editor. If
you are, then you will notice a red “X” in the upper right portion of the editor indicating the
script is running. If you launch an instance of notepad.exe and wait for a few seconds, you will
still not see anything. However, if you then close Notepad.exe you will see the printout of the
name, time, and Process ID. The script is still in a loop. It will continue to monitor for a pro
cess deletion event where the name of the process is notepad.exe. In your script editor go
ahead and stop the running of the script. (Note: The MonitorForProcessDeletion.vbs script
works on Microsoft Windows Server 2003.)

MonitorForProcessDeletion.vbs

strComputer = "."

objName = ""notepad.exe""

objTGT = ""win32_Process""

wmiNS = "\root\cimv2"

wmiQuery = "SELECT * FROM __InstanceDeletionEvent WITHIN 10 WHERE " _

& "TargetInstance ISA " & objTGT & " AND " _

& "TargetInstance.Name=" & objName

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

Set objItem = colItems.NextEvent

Wscript.Echo "Name: " & objItem.TargetInstance.Name & " " & now

Wscript.Echo "ProcessID: " & objItem.TargetInstance.ProcessId

Security_

It is not surprising that the Security_ property is used to read or set the security settings of an
SWbemEventSource object. This property is an SWbemSecurity object. We also use the SWbem-
Security object to request additional privileges when performing operations such as loading or
unloading drivers. In the MonitorForProcessDeletion.vbs script, we do not use the SWbem-
Security object as no privileged operation is being conducted. It is mentioned here, so you will
know you can retrieve a privilege object in an event driven query. The SWbemSecurity object is
discussed in detail in Chapter 8.

106 Part II: WMI Queries and Events

Quick Check

Q: Why would you use an SWbemEventSource object?

A: You use the SWbemEventSource object to receive events from an event query.

Q: Once you have created an SWbemEventSource object, which method is available to
your script?

A: Only one method is available from the SWbemEventSource object—the NextEvent method.

Q: If you do not supply a parameter to the NextEvent method when you call it, how long
will the script wait for an event to occur?

A: If no parameter is supplied to the NextEvent method, the script will wait forever.

Working with SWbemServices
We discussed the SWbemServices object in more detail in Chapter 4. Now we examine two
methods that are used when working with events: the ExecNotificationQuery method and the
ExecNotificationQueryAsync method.

ExecNotificationQuery

Use the ExecNotificationQuery method of the SWbemServices object to execute a query that
receives events. The nice thing about the ExecNotificationQuery method is that it returns
immediately.

Several parameters need to be specified for the ExecNotificationQuery method to succeed. The
first is obvious: you need to supply a query. What is not obvious is that everything else is
optional. In the script MonitorFileCreationEvents.vbs, I use ExecNotificationQuery to look for
events that meet the criteria contained in the variable wmiQuery. I look for creation events that
occur when I monitor the directory C:\fso. I use the FunFix function to convert the directory
name into acceptable form for WMI.

MonitorFileCreationEvents.vbs

strComputer = "."

wmiNS = "\root\cimv2"

objClass = ""cim_DirectoryContainsFile""

objGroup = ""Win32_Directory.Name="

strFolder = "C:\fso"

strFolder = funFix(strFolder)

StrMessage = "A new " & objClass & " was created: "

wmiQuery = "SELECT * FROM __InstanceCreationEvent " _

& "WITHIN 10 WHERE TargetInstance ISA " & objClass & " AND " _

& "TargetInstance.GroupComponent= " _

& objGroup & strFolder

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

Chapter 5: Using WMI Events 107
Do

Set objItem = colItems.NextEvent

Wscript.Echo StrMessage & objItem.TargetInstance.PartComponent

Loop

Function funFix(strFolder)

funFix = """" & Replace(strFolder, "\", "\\\\") & """""

End function

ExecNotificationQueryAsync

The ExecNotificationQueryAsync method is used to receive events from a query in an asynchro
nous fashion. The results and the status messages are returned to the calling application
through events that are delivered to the sink specified in the objWbemSink parameter. When
you use an asynchronous query, the results do not come back immediately. To have a place to
store the events until you are ready to use them, you have to create a sink, which is explained
in the following paragraphs.

You can use this method to query any of the events built into WMI, such as the __Instance-
ModificationEvent, or you can also use the ExecNotificationQueryAsync method to receive events
from classes that are designed to provide events—such as the Win32_IP4RouteTableEvent class.

Two parameters must be specified to use the ExecNotificationQueryAsync method. The first is the
name of an objWbemSink, and the second is the query. To specify the name of an objWbemSink,
first you must create the sink by using a line of code that looks something like the following:

Set objSink = CreateObject("WbemScripting.SWbemSink","SINK_")

After the sink is created, you can then specify it as the first parameter of the ExecNotification-
QueryAsync method. If you supply a value for the query language, it must be listed as WQL.
You can also specify one of two flags. The first flag is the wbemFlagSendStatus 0x80 flag, which
causes the asynchronous call to send status updates to the onProgress event handler for the
object sink. The second flag is the wbemFlagDontSendStatus 0x0 flag, which prevents asynchro
nous calls from sending status updates to the onProgress event handler for the object sink.

Quick Check

Q: What are the two main types of event queries that you can perform from an SWbem-
Services object?

A: The two main types of event queries that you can perform from an SWbemServices object
are ExecNotificationQuery and ExecNotificationQueryAsync.

Q: What are the two parameters that must be supplied to ExecNotificationQueryAsync?

A: The two parameters that must be supplied to ExecNotificationQueryAsync are the name of
an objWbemSink and the query.

108 Part II: WMI Queries and Events
The next parameter that can be specified is an objWbemNamedValueSet value. Although this is
normally left blank, you can specify an object to represent context information that can be
used by the provider that is servicing the request.

The last parameter is also optional, and it is an SWbemNamedValueSet object as well that is
used to return information to the object sink to identify the source of the original call. This is
used when you need to make multiple asynchronous calls that use the same sink. You can add
this object by using the Add method. Once you add the object, you can obtain the source of
the call by using the Item method.

Finally, you need to look at the return codes that come back once the ExecNotificationQuery-
Async method has completed. Items that can be found in the err object are listed in Table 5-1.

Table 5-1 ExecNotificationQueryAsync Error Codes

Error Number Meaning

wbemErrAccessDenied 0x80041003 Current user is not authorized to view the
result set.

wbemErrFailed 0x80041001 Unspecified error.

wbemErrInvalidParameter 0x80041008 Invalid parameter is specified.

wbemErrInvalidQuery 0x80041017 Query syntax is not valid.

wbemErrInvalidQueryType 0x80041018 Requested query language is not supported.

wbemErrOutOfMemory 0x80041006 Not enough memory to complete the
operation.

In the script MonitorRegistryChangeEvents.vbs, I perform an asynchronous event-driven
query by using the ExecNotificationQueryAsync method. I am monitoring a registry key for any
changes by using the RegistryKeyChangeEvent class, which is supplied by the System Registry
Provider and resides in the root/default namespace. Any change that occurs to the specified
registry key generates an event. Because of the nature of the registry, I want these notifications
to occur asynchronously, so I create a sink to store the events for a little while and use an asyn
chronous event query. Keep in mind that when you create a sink, you have to use the Wscript
prefix in front of the CreateObject command.

To make the query easier to modify (without having to worry about single quotes, spacing,
and helper words), I have included two functions that take the portions of the query and put
them together for you. The strEvent variable holds the Select statement. You are choosing
everything from the RegistryKeyChangeEvent class. You can modify this to examine a
Registry_TreeChangeEvent or a RegistryValueChangeEvent as well. The strHive variable still mon
itors one of the major hives in the registry because Hive is the first parameter that needs to be
supplied for these classes. The strKeyPath variable holds the path to a registry tree, key, or
value—depending on which class you choose to use.

Chapter 5: Using WMI Events 109
MonitorRegistryChangeEvents.vbs

strEvent = "SELECT * FROM RegistryKeyChangeEvent"

strHive = "HKEY_LOCAL_MACHINE"

strKeyPath = "SOFTWARE\Microsoft\Windows NT\CurrentVersion"

Set objWmiServices = GetObject("winmgmts:root/default")

Set objWmiSink = Wscript.createObject("WbemScripting.SWbemSink", "SINK_")

objWmiServices.ExecNotificationQueryAsync objWmiSink, _

funMakeStr(strEvent,strHive,StrKeyPath)

WScript.Echo "Monitoring for Registry Changes ..." & vbCrLf

While(true)

WScript.Sleep 2000

Wend

Sub SINK_OnObjectReady(wmiObject, wmiAsyncContext)

WScript.Echo "Registry Change occurred" & vbCrLf & _

"------------------------------" & vbCrLf & _

wmiObject.GetObjectText_()

End Sub

Function funMakeStr(strEvent,strHive,strKeyPath)

funMakeStr = strEvent & " Where Hive ="" & strHive & """& _

"And keyPath=" & funFixKeyPath(strKeyPath)

End Function

Function funFixKeyPath(strKeyPath)

funFixKeyPath = """ & replace(strKeyPath,"\","\\") & """

End function

Quick Check

Q: When you use an ExecNotificationQuery, when does the script return?

A: When you use an ExecNotificationQuery, the script returns immediately.

Q: To use an ExecNotificationQueryAsync method, which object must be created to help
with the query?

A: To use an ExecNotificationQueryAsync method, you must create an objWbemSink object.

Understanding Event Consumers
Event consumers are classes that already know how to respond to certain events that are trig
gered in response to particular activities. You can create an instance of one of these consumers
and use the class to execute certain actions when the specified event occurs. When working
with the standard event consumers, you must always put some common elements into place.
These include the following:

110 Part II: WMI Queries and Events
■ Create an instance of the consumer

■ Create an event filter

■ Create an event query

■ Bind the filter to the consumer

Creating an Instance of the Consumer

The first step in working with a permanent event consumer is to create an instance of the con
sumer. You can do this using one of several methods. You can use a Managed Object Format
(MOF) file, the WMI tools, or a script. Three ingredients are essential to creating an instance
of the consumer:

■ Get

■ SpawnInstance_ ()

■ Put_

Each consumer has its own peculiarities; in general, you will use code that looks like the fol
lowing.

" create the active script consumer

set objConsumerClass=objActiveScriptConsumer.get _ ("ActiveScriptEventConsumer")

set objconsumer=objconsumerclass.spawninstance_()

objconsumer.name="ToggleAlerter"

objconsumer.scriptfilename="c:\a\ToggleAlerterService.vbs"

objconsumer.scriptingengine="vbscript"

set consumerpath = objconsumer.put_

Creating an Event Filter

To create an event filter, you need to specify an event-driven query that is used to drive the
subscription. This is the same type of query you used earlier with the notification query
scripts. You specify the event system class you wish to monitor and the target class properties
you are interested in tracking. Once you have defined the query, you use a Get statement to
retrieve an “__EventFilter” you call SpawnInstance_, and finally you use a Put_ statement to
place the filter into the appropriate namespace. The following code illustrates this procedure.

"Create the event filter

eClass = "__instanceModificationEvent" "type of event to obtain

tClass = ""win32_service"" "wmi class to monitor

tName = ""Schedule"" "name property of target class

qQuery ="select * from " & eClass & " within 10 where targetInstance isa "_

& tClass & " and targetinstance.name="

& tNameset objfilterclass=objActiveScriptConsumer.get("__EventFilter")

set objfilter=objfilterclass.spawninstance_()

objfilter.name="win32ServiceModification"

objfilter.querylanguage="wql"

Chapter 5: Using WMI Events 111
objfilter.query=(qQuery)

set filterpath = objfilter.put_

Creating an Event Query

The event query you then create is a basic WMI query like the ones we have already examined.
For more information on event queries, see Chapter 3.

Binding the Filter to the Consumer

Once you have created an instance of the desired consumer, crafted your event-driven query,
and put your event filter into the appropriate WMI namespace, it is time to bind the filter to
the consumer. As shown in Figure 5-1, you can use the WMI Event Registration tool to look at
the event consumers that are installed on your computer. The WMI Event Registration tool is
part of the WMI Administrative Tools, which can be found in the Tools folder on the accom
panying CD.

Figure 5-1 Using the event registration tool to view installed consumers

This might seem disappointingly simple after struggling through the two previous code sam
ples. First, you get the __FilterToConsumerBinding system class. You assign the returned object
to the objBindingClass variable. Next, you create a new instance of the objBindingClass by using
the SpawnInstance_ command. Then you wire up the connections by specifying the filter and
the consumer. Once this is done, you use the Put_ command to write the binding back to
WMI, as shown in the following code:

112 Part II: WMI Queries and Events
"Do the binding

FTCB = "__filterToConsumerBinding"

set objbindingclass=objActiveScriptConsumer.get(FTCB)

set objbinding=objbindingclass.spawninstance_()

objbinding.filter=filterPath

objbinding.consumer=consumerpath

objbinding.put_

ActiveScriptEventConsumer

The ActiveScriptEventConsumer is used to execute a predefined script when an event is deliv
ered to it. This consumer was first introduced in Microsoft Windows 2000, and it continues to
be available in Windows Server 2003. The ActiveScriptEventConsumer class has a number of
properties that can be specified. These properties are listed in Table 5-2. Two of the settings,
the Timeout and MaximumScripts properties, can be applied to a running instance or can be
applied as global values by specifying values of the ScriptingStandardConsumerSetting class.

Table 5-2 ActiveScriptEventConsumer Properties

Data Type Property Meaning

uint8 CreatorSID Array that represents the secuirty identifier (SID)
of the creator.

uint32 KillTimeout Number of seconds the script is allowed to run.
Default of 0 means no termination.

string MachineName Name of computer that receives the event.

uint32 MaximumQueueSize Maximum queue in bytes.

string Name Key value. Unique ID for event consumer.

string ScriptFileName Name of the file from which the script is read.

string ScriptingEngine VBScript or Microsoft JScript. Cannot be a null
value.

string ScriptText Text of the script. Must be a null value if Script-
FileProperty is not a null value.

The ActiveScriptEventConsumer class CreatorSID property is inherited from the __Event-
Consumer class, as is the MachineName property. The ActiveScriptEventConsumer class resides
in the root\subscription namespace. If the text of the script is specified in the event consumer
instance, the script has access to the event instance by using the script environment variable
TargetEvent. When the script runs, it uses the localSystem account. As a security measure, only
the local system administrator or a domain administrator is permitted to configure the script
ing consumer. The access rights are not checked until run time.

After the consumer is configured, any user can trigger the event that causes the script to exe
cute. If the script fails, error codes are returned. Scripts that use MsgBox will execute, but they
will not display information on the screen because the script is not running under the Win
dows Script Host. In Windows 2000, the ActiveScriptEventConsumer is not compiled by
default, and you must use Mofcomp.exe to compile the Scrcons.mof into a namespace. In

Chapter 5: Using WMI Events 113
Microsoft Windows XP and Windows Server 2003, it is already compiled into the root\
subscription namespace. The Scrcons.mof file is located in the directory %System-
Root%\System32\WBEM. The CreatePermanentEventRunScript.vbs script uses the Active-
ScriptEventConsumer. We discussed the major concepts of this script earlier.

CreatePermanentEventRunScript.vbs

strcomputer = "mred" "name of target computer. Can not use "."

wmiNS = "\root\subscription"

eClass = "__instanceModificationEvent" "type of event to obtain

tClass = ""win32_service"" "wmi class to monitor

tName = ""Schedule"" "name property of target class

qQuery ="select * from " & eClass & " within 10 where targetInstance isa "_

& tClass & " and targetinstance.name=" & tName

set objActiveScriptConsumer=getobject("winmgmts:\\" & strcomputer & wmiNS)

"Create the event filter

set objfilterclass=objActiveScriptConsumer.get("__EventFilter")

set objfilter=objfilterclass.spawninstance_()

objfilter.name="win32ServiceModification"

objfilter.querylanguage="wql"

objfilter.query=(qQuery)

set filterpath = objfilter.put_

"Create the active script consumer

set objConsumerClass=objActiveScriptConsumer.get("ActiveScriptEventConsumer")

set objconsumer=objconsumerclass.spawninstance_()

objconsumer.name="ToggleAlerter"

objconsumer.scriptfilename="c:\a\ToggleAlerterService.vbs"

objconsumer.scriptingengine="vbscript"

set consumerpath = objconsumer.put_

"Do the binding

FTCB = "__filterToConsumerBinding"

set objbindingclass=objActiveScriptConsumer.get(FTCB)

set objbinding=objbindingclass.spawninstance_()

objbinding.filter=filterPath

objbinding.consumer=consumerpath

objbinding.put_

Using SMTPEventConsumer
The SMTPEventConsumer can be used to send an e-mail message by using Simple Mail Transfer
Protocol (SMTP) when an event is delivered to it. The SMTPEventConsumer is not compiled by
default on a computer running Windows 2000. This means you need to use Mofcomp.exe to
compile the file Smtpcons.mof into the namespace of your choosing. You might want to com
pile it into the root\subscription namespace because that is where it is compiled by default in
Windows XP and Windows Server 2003. The file Smtpcons.mof is located in the directory
%SystemRoot%\System32\WBEM. To compile the MOF file into the subscription namespace,
you can use the following command:

Mofcomp –n:root\subscription smtpcons.mof

114 Part II: WMI Queries and Events
Keep in mind a few caveats when using the SMTPEventConsumer. The first one is most impor
tant: you must have an SMTP mail server accessible to the computer running the script
because of the way the SMTPEventConsumer is implemented—it forwards the mail message to
a mail server rather than installing its own server.

The second caveat is that you will not be able to send attachments with the SMTPEvent-
Consumer. In addition, the mail message will need to be US-ASCII. Other than that, it is a great
way to send e-mail alerts.

Understanding the New Event Consumers

LogFileEventConsumer

The LogFileEventConsumer is a standard event consumer that knows how to write to log files.
That’s right: this new class knows how to write customized strings to a text log file when an
event is delivered to it. The strings are separated by an end-of-line sequence, such as a semicolon.

To use this class, you create an instance of the LogFileEventConsumer class, create an event fil
ter, and then bind the filter to the consumer. You need to specify a file name to use for logging.
The file need not exist (it is created automatically), but the path to the file must exist. The text
that is written to the log file is defined in the Text property. This becomes a template for future
log entries, and it is permissible to use parameters containing property names from the mon
itored class, for instance, “%freespace%” if you were tracking the Win32_LogicalDisk class.

NTEventLogEventConsumer

The NTEventLogEventConsumer class is used to write messages to the event log. It does this
when it receives a message in response to the event filter bound to it. Because this is a stan
dard event consumer, it follows the same pattern you have seen—that is, you first create an
instance of the NTEventLogEventConsumer class by using the SpawnInstance method and put
ting the newly created instance of the class into the WMI namespace. Next, you create an
instance of the event filter, and finally you bind the filter to the consumer. When you are cre
ating a new instance of the class, you need to specify properties. The properties you use are
listed in Table 5-3.

Table 5-3 NTEventLogConsumer Properties

Data Type Property Meaning

Uint16 Category Event category. Not a null value.

Uint32 EventID Event ID number. Not a null value.

Uint32 EventType	 Type of event: EventLog_Success,
EventLog_Error_Type, EventLog_Warning_Type,
EventLog_Information_Type,
EventLog_Audit_Success, EventLog_Audit_Failure

Chapter 5: Using WMI Events 115
Table 5-3 NTEventLogConsumer Properties

Data Type Property Meaning

String Array InsertionStringTemplates Array of string templates used to write to the event
log record.

String Name Name of the consumer. Key property.

String NameOfRawdataProperty Name of the event property containing data.

String NameOfUserSidProperty Name of the event property containing the SID.

Uint32 NumberOfInsertionStrings Number of elements in the InsertionStringTem-
plates. Not a null value.

String SourceName Source name where the message is located. Not a
null value.

String UNCServerName Name of the computer on which to log the event.
If it is a null value, it is logged locally.

CommandLineEventConsumer

The CommandLineEventConsumer class is used to launch a process when it receives an event.
The process is any executable that you want to launch. This can be a script, batch file, or EXE
file. It is important to keep the process in a secure location that has an appropriate access con
trol list (ACL) applied. The string used to specify the process to run can be a full path or a par
tial. If you specify a partial path, the current drive and directory are used, which can lead to
unpredictable results. Two properties can be used to specify the executable: ExecutablePath
and CommandLineTemplate. These two properties are not used together.

Working with Different Types of Events
The main barrier that most network administrators must face when working with eventing
scripts is the sheer number of events that are available. There are four different kinds of
events: class events, instance events, namespace events, and what I call eventing events
(events that are related to events).

Class Events

There are three types of class events: the class creation event, the class deletion event, and the
class modification event. The __ClassCreationEvent system class is used to represent an event
that occurs when a class is created in a namespace. The __ClassDeletionEvent class represents an
event that occurs in response to the deletion of a class in a namespace. The __ClassModification-
Event system class is used to represent an event that occurs when a class is modified.

Instance Events

There are four types of instance events: the instance creation event, the instance operation
event, the instance deletion event, and the instance modification event. When an instance of

116 Part II: WMI Queries and Events
a class is created, you get an instance creation event. In the following script MonitorFor-
ShareCreation.vbs, when a new share is created, it triggers an instance creation event and
echoes out the name of the share, the path to the share, and the time the share was created.

MonitorForShareCreation.vbs

strComputer = "."

objTGT = ""win32_Share""

wmiNS = "\root\cimv2"

wmiQuery = "SELECT * FROM __InstanceCreationEvent WITHIN 10 WHERE " _

& "TargetInstance ISA " & objTGT

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

Do

Set objItem = colItems.NextEvent(-1)

Wscript.Echo "A New Share was created at: " & Now & vbcrlf & _

space(4) & "share name: " & objItem.TargetInstance.Name & vbcrlf & _

space(4) & "share path: " & objItem.TargetInstance.Path

Loop

If you change the query from targeting the __InstanceCreationEvent class to monitoring
__InstanceDeletionEvent, you get notification of shares that are being deleted, as shown in the
MonitorForShareDeletion.vbs script that follows. This is the only change that is required—oth
erwise, the script works in the same manner and you are interested in the same properties in
the Win32_Share class.

MonitorForShareDeletion.vbs

strComputer = "."

objTGT = ""win32_Share""

wmiNS = "\root\cimv2"

wmiQuery = "SELECT * FROM __InstanceDeletionEvent WITHIN 10 WHERE " _

& "TargetInstance ISA " & objTGT

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

Do

Set objItem = colItems.NextEvent(-1)

Wscript.Echo "A Share was deleted at: " & Now & vbcrlf & _

space(4) & "share name: " & objItem.TargetInstance.Name & vbcrlf & _

space(4) & "share path: " & objItem.TargetInstance.Path

Loop

If you are concerned with changes to the shares on the server and not with the creation or
deletion of shares, it would make sense to monitor for __InstanceModificationEvent events.
Instead of selecting everything from the __InstanceDeletionEvent class, you can target your
query onto the __InstanceModificationEvent. This system class informs you if something
changes to a share on the server. If you add a description to a share, it triggers an event. If you
change the number of users allowed to access the share, it triggers an event. If you delete the
share, it triggers an __InstanceDeletionEvent.

Chapter 5: Using WMI Events 117
Namespace Events

There are three types of namespace events: the namespace creation event, the namespace dele
tion event, and the namespace modification event. These events work in the same manner as
do the instance events. By monitoring for namespace events, you can track the deployment of
permanent event subscriptions as they make modifications to the namespace.

Eventing Events

There are four events that are related to event scripts: the consumer failed event, the event
dropped event, the event queue overflow event, and the method invocation event. By monitor
ing eventing events, you can track the status of monitors.

Summary
In this chapter, we looked at the use of event-driven scripts. We examined the two ways you
can write event-driven queries by using the ExecNotificationQuery and the ExecNotificationQue
ryAsync methods. We also discussed event consumers and the four types of events available
through VBScript.

Quiz Yourself
Q: What is the difference between a class creation event and an instance creation
event?

A: The difference between a class creation event and an instance creation event is that

the instance creation event is generated when an individual item is created, whereas a

class creation event is generated when a collection of items is created.

Q: When would you use ExecNotificationQuery?

A: You would use ExecNotificationQuery any time you wanted to subscribe to an event.

Q: Which three items must be created to use a permanent event subscription?

A: To use a permanent event subscription you must create an instance of the event con
sumer, an event filter, and a filter-to-consumer binder.

118 Part II: WMI Queries and Events
On Your Own

Lab 11 Creating a Video Change Notification Script

In this lab, you will create a script that provides notification when a change to the video set
tings on your workstation occurs.

1. Open the script WMITemplate.vbs, and save it as StudentLab11.vbs.

2. Turn off On Error Resume Next.

3. Declare a variable to hold the WMI class being monitored. Call it objTGT.

4.	 Above the wmiQuery line, assign the value of objTGT to be equal to
Win32_VideoController. Make sure to embed double quotes as shown here:

objTGT = ""Win32_VideoController""

5.	 Modify the wmiQuery so that it points to the __InstanceModificationEvent system class.
For testing purposes, you will test within 10 seconds. The TargetInstance will be a
Win32_VideoController, which you have assigned to objTGT. The modified query looks
like the following:

wmiQuery = "SELECT * FROM __InstanceModificationEvent WITHIN 10 WHERE " _

& "TargetInstance ISA " & objTGT

6.	 Modify the Set colItems line so that you are doing an ExecNotificationQuery query instead
of an ExecQuery.

7.	 Delete the For Each Next loop and everything inside it, including all the Wscript.echo
commands. At this point nothing follows the ExecNotificationQuery line you just modi
fied in step 6. Save your work, and then run the script. It should run without errors, but
it will not do anything.

8.	 Add a Do Loop under the ExecNotificationQuery. On one line, type Do, insert a few blank
lines under Do, and type Loop.

9.	 Under the Do command, set objItem to hold the next event that comes back. Your code
will look like the following:

Set objItem = colItems.NextEvent(-1)

10. Echo out a line that indicates the video settings were modified. Include a time stamp.

11. Echo out the PreviousInstance.VideoModeDescription property and the TargetIn
stance.VideoModeDescription property. This shows you what has changed. My code looks
like the following:

Wscript.Echo "Video Settings were Modified at: " & Now & vbcrlf & _

space(4) & "Description: " & objItem.TargetInstance.Name & vbcrlf & _

space(4) & "VideoModeDescription: "

& objItem.TargetInstance.VideoModeDescription & vbcrlf & _

Space(4) & "Previous Settings: " & objItem.PreviousInstance.VideoModeDescription

Chapter 5: Using WMI Events 119
12. Save and run your script. Notice it does not appear to do anything. Change your video
resolution and within a few seconds you should see something that looks like the fol
lowing (depending on your video card and your screen resolution):

Video Settings were Modified at: 5/10/2005 11:37:40 PM

Description: NVIDIA GeForce FX Go5200 32M/64M

VideoModeDescription: 1280 x 1024 x 4294967296 colors

Previous Settings: 1024 x 768 x 4294967296 colors

Lab 12 Expanding the Video Notification Script

In this lab, you will extend the script you created in Lab 11 to report on any modifications
made to the video settings. You will do this by adding a subroutine that creates a dictionary to
hold previous values of properties. Once an instance modification event is detected, you enter
the subroutine and check for modifications.

1.	 Open and run the script Win32_VideoController.vbs. Note that there are more than 50
properties reported by this script. A change to any of these properties would cause an
__InstanceModificationEvent, yet the script in the previous lab checks for a change only in
the VideoModeDescription property. Close Win32_VideoController.vbs.

2. Open the script Lab12Starter.vbs and save it as StudentLab12.vbs.

3.	 Declare two variables to be used with the dictionary: strProperty and strPreProperty, as
shown here:

dim strProperty

dim strPreProperty

4.	 Create a dictionary object. Place the line that creates the dictionary under the ExecNoti
ficationQuery line. Assign the object to a variable called objDictionary. Make sure you
declare objDictionary under the other variables at the top of your script. The code to cre
ate the dictionary looks like the following:

Set objDictionary = CreateObject("scripting.dictionary")

5.	 Just above the Loop command, add a command to enter the subroutine. This is simply
the name of the subroutine. Call it subGetModifiedProperty, as shown here:

subGetModifiedProperty

6.	 Remove the two lines that print out the VideoModeDescription associated with the Target-
Instance and the PreviousInstance. You can simply comment them out, as shown here:

" space(4) & "VideoModeDescription: "

& objItem.TargetInstance.VideoModeDescription & vbcrlf & _

" Space(4) & "Previous Settings: " & objItem.PreviousInstance.VideoModeDescription

7. Remove the line continuation from the description line as shown here:

space(4) & "Description: " & objItem.TargetInstance.Name "& vbcrlf & _

120 Part II: WMI Queries and Events
8.	 At the bottom of your script, add the Sub subGetModifiedProperty command followed by
an End Sub command on a separate line.

9.	 Under the Sub subGetModifiedProperty line, add a For Each Next structure that accesses
the Properties_ of the target instance. Add the name and value of each property to the
dictionary. This will look like the following:

For Each strProperty In objItem.TargetInstance.properties_

objDictionary.add strProperty.name, strProperty.value

Next

10. Under the Next from the For Each strProperty command, evaluate the values from the
previous instance against the values stored in the dictionary. If the values are not equal,
echo out the changed properties. The code to do this is as follows:

For Each strPreProperty In objItem.previousInstance.properties_

if objDictionary(strPreProperty.name) <> strPreProperty.value Then

WScript.Echo " property modified: " & strPreProperty.name

WScript.Echo vbtab & "Was: " & strPreProperty.value & _

" now: " & objDictionary(strPreProperty.name)

End If

Next

11. Because you are continuing to monitor for events, you want to empty the dictionary so
you can use it again on the next event. To do this, use the RemoveAll method as shown
here:

objDictionary.removeAll

12. Save and run the script. Once again, it appears not to do anything. Change the color
depth, and then you should see some information output. Change the color depth back
to the original settings. Once again, you should see some output similar to the following:

Video Settings were Modified at: 5/11/2005 12:05:00 AM

Description: NVIDIA GeForce FX Go5200 32M/64M

property modified: CurrentBitsPerPixel

Was: 32 now: 16

property modified: CurrentNumberOfColors

Was: 4294967296 now: 65536

property modified: VideoModeDescription

Was: 1024 x 768 x 4294967296 colors now: 1024 x 768 x 65536 colors

Video Settings were Modified at: 5/11/2005 12:05:21 AM

Description: NVIDIA GeForce FX Go5200 32M/64M

property modified: CurrentBitsPerPixel

Was: 16 now: 32

property modified: CurrentNumberOfColors

Was: 65536 now: 4294967296

property modified: VideoModeDescription

Was: 1024 x 768 x 65536 colors now: 1024 x 768 x 4294967296 colors

P03622310.fm Page 121 Tuesday, September 27, 2005 2:09 PM

Part III
Connect Server and Additional
Privileges

P03622310.fm Page 122 Tuesday, September 27, 2005 2:09 PM

Chapter 6

Using the SWbemLocator

Methods

In Chapter 5, we covered a lot of material. We looked at the ways you can create scripts that
respond to events and examined the different kinds of events, as well as the two main meth
ods of performing event-driven queries. Along the way, we talked about permanent event con
sumers and discussed the main tasks involved in using them. In this chapter we look at the
SWbemLocator methods used to connect into Windows Management Instrumentation
(WMI). These methods give you more power and flexibility in scripting than using the simple
WMI moniker does.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of writing WMI queries

■ The basic use of WMI classes, namespaces, and methods

■	 Use of basic Microsoft Visual Basic Scripting Edition (VBScript) commands and proce
dures

After you complete this chapter, you will be familiar with the following concepts:

■ The use of the SWbemLocator object

■ When to use the SWbemLocator

■ Use of the ConnectServer method

■ Specifying timeout values for the WMI connection

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter06 folder.
123

124 Part III: Connect Server and Additional Privileges
Using the Locator Object
The SWbemLocator object offers a different way to make a connection into WMI. When you
use the SWbemLocator object, the SWbemServices object returned is your connection into the
specified namespace on either a local or a remote computer. Once you have made this connec
tion, you can use any of the SWbemServices methods to accomplish the task at hand.

At first glance, it might seem that the SWbemLocator is rather lame—it has only one method:
the ConnectServer method. It also has only one property: the Security_ property. Do not allow
this seeming lack of richness to fool you—this is the Swiss Army knife of WMI objects.

Using Alternate Credentials

One of the primary advantages of using the SWbemLocator object is the capability of specify
ing alternative credentials. The ConnectServer method of the SWbemLocator object is used to
connect to the server that is specified as the first parameter. In the ConnectServer-
Win32_NetworkProtocol.vbs script, the computer name is held in the strComputer variable,
which is a remote computer named Acapulco. The computer specified has to be a remote com
puter if you are going to use alternate credentials. It can be any computer on the network that
has WMI installed on it, including computers running Microsoft Windows 95 and Windows
98. The main consideration, of course, is that the class exists on the target computer. In the
ConnectServerWin32_NetworkProtocol.vbs script, the variable strUsr holds the user name,
and the variable strPWD contains the user’s password. This is the security context used to
connect to the root\cimv2 namespace on the Acapulco server. The easiest way to specify these
credentials is to use the domain\username form and to leave the authority parameter blank—
the approach taken by the ConnectServerWin32_NetworkProtocol.vbs script.

ConnectServerWin32_NetworkProtocol.vbs

strComputer = "acapulco" 'name of a remote computer

wmiNS = "\root\cimv2"

wmiClass = "win32_NetworkProtocol"

wmiWhere = " where name like '%TCP/IP%'"

wmiQuery = "Select * from " & wmiClass & wmiWhere

strUsr ="nwtraders\LondonAdmin"'Domain\Username

strPWD = "P@ssw0rd"'UserNames password

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS, _

strUsr, strPWD)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

With objItem

msg = msg & "Caption: " & .Caption & vbcrlf

msg = msg & "ConnectionlessService: " & .ConnectionlessService& vbcrlf

msg = msg & "Description: " & .Description& vbcrlf

msg = msg & "GuaranteesDelivery: " & .GuaranteesDelivery& vbcrlf

msg = msg & "GuaranteesSequencing: " & .GuaranteesSequencing& vbcrlf

Chapter 6: Using the SWbemLocator Methods 125
msg = msg & "InstallDate: " & FunTime(.InstallDate)& vbcrlf

msg = msg & "MaximumAddressSize: " & .MaximumAddressSize& vbcrlf

msg = msg & "MaximumMessageSize: " & .MaximumMessageSize& vbcrlf

msg = msg & "MessageOriented: " & .MessageOriented& vbcrlf

msg = msg & "MinimumAddressSize: " & .MinimumAddressSize& vbcrlf

msg = msg & "Name: " & .Name& vbcrlf

msg = msg & "PseudoStreamOriented: " & .PseudoStreamOriented& vbcrlf

msg = msg & "Status: " & .Status& vbcrlf

msg = msg & "SupportsBroadcasting: " & .SupportsBroadcasting& vbcrlf

msg = msg & "SupportsConnectData: " & .SupportsConnectData& vbcrlf

msg = msg & "SupportsDisconnectData: " & .SupportsDisconnectData& vbcrlf

msg = msg & "SupportsEncryption: " & .SupportsEncryption& vbcrlf

msg = msg & "SupportsExpeditedData: " & .SupportsExpeditedData& vbcrlf

msg = msg & "SupportsFragmentation: " & .SupportsFragmentation& vbcrlf

msg = msg & "SupportsGracefulClosing: " & .SupportsGracefulClosing& vbcrlf

msg = msg & "SupportsGuaranteedBandwidth: " & .SupportsGuaranteedBandwidth& vbcrlf

msg = msg & "SupportsMulticasting: " & .SupportsMulticasting& vbcrlf

msg = msg & "SupportsQualityofService: " & .SupportsQualityofService& vbcrlf

End With

Next

WScript.echo msg

Function FunTime(wmiTime)

Dim objSWbemDateTime 'holds an swbemDateTime object. Used to translate Time

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value= wmiTime

FunTime = objSWbemDateTime.GetVarDate

End Function

Using ConnectServer in Different Ways
One reason the ConnectServer method is so flexible is the number of parameters that can be
specified for it. The ConnectServer method connects to the namespace on a specific computer.
Typically, this is either local or remote—and, of course, the target machine has to have WMI
installed. The flexibility comes from all the different properties that can be used. If connecting
locally, you will not be able to specify alternative credentials, so those parameters are padded
out with commas. The other options are configurable for the context appropriate to the req
uisite situation. In the MSAcpi_ThermalZoneTemperature.vbs script, I use a cool class to tell
about the temperature of my laptop. To use this class, you need to switch to the root\wmi
namespace. You do this by using the wmiNS variable in the second position after the Connect-
Server command.

MSAcpi_ThermalZoneTemperature.vbs

strComputer = "Mred"

wmiNS = "\root\wmi"

wmiQuery = "Select * from MSAcpi_ThermalZoneTemperature"

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

126 Part III: Connect Server and Additional Privileges
For Each objItem in colItems

With objItem

wscript.echo "Active: " & .Active

wscript.echo "ActiveTripPoint: " & join(.ActiveTripPoint, ",")

wscript.echo "ActiveTripPointCount: " & .ActiveTripPointCount

wscript.echo "CriticalTripPoint: " & .CriticalTripPoint

wscript.echo "CurrentTemperature: " & .CurrentTemperature

wscript.echo "InstanceName: " & .InstanceName

wscript.echo "PassiveTripPoint: " & .PassiveTripPoint

wscript.echo "Reserved: " & .Reserved

wscript.echo "SamplingPeriod: " & .SamplingPeriod

wscript.echo "ThermalConstant1: " & .ThermalConstant1

wscript.echo "ThermalConstant2: " & .ThermalConstant2

wscript.echo "ThermalStamp: " & .ThermalStamp

wscript.echo " "

End With

Next

Changing the Defaults

If you are going to use the ConnectServer method, it stands to reason you are going to be mod
ifying the defaults. You do not have to specify the parameters for the ConnectServer method if
you don’t want to. You can use the default values as shown in the RunningNONautoServices-
AndDescription.vbs script. You set objLocator to hold the SWbemLocator object that comes
from the CreateObject command. Once you have the SWbemLocator object, you use the
ConnectServer method. It is on this line that you specify the parameters. In the RunningNON
autoServicesAndDescription.vbs script, notice that no parameters are specified on the Set
objWMIService line. I am using only the default values for each of the parameters available
from the ConnectServer method. The default values for each of the parameters are listed in
Table 6-1.

RunningNONautoServicesAndDescription.vbs

strProperty = "startMode, description"

strClass = "Win32_Service"

strState = "state = 'running' and startmode <> 'Auto'"

wmiQuery = "Select " & strProperty & " from " & strClass &_

" where "& strState

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

With objItem

Wscript.Echo "Name: " & .name & tab & "startMode: " & .startMode

wscript.echo tab & .description

End With

Next

Chapter 6: Using the SWbemLocator Methods 127
Omitting Fields

Table 6-1 lists the parameters that can be specified for the ConnectServer method. The param
eters must be specified in the order listed. If any are left out, you must pad out the connection
string with commas—indicating the number of parameters not supplied.

Table 6-1 ConnectServer Parameters

Parameter Default Description

Server “.” for local machine. Used for access to remote com-
puter.

Namespace root\cimv2 in Microsoft Win- The namespace in which to log
dows 2000, Windows XP, and on.
Windows Server 2003.

User Current user.	 The user name used with the
connection; domain\username
or universal principal name
(UPN).

Password Current security context.	 The password used with the
connection.

Locale Current locale. Localization code.

Authority	 Operating system negotiates Either Kerberos or NTLM. If do-
with Component Object Model main is specified in strUser
(COM) to determine whether name, leave this blank.
NTLM or Kerberos authentica
tion is used.

SecurityFlags	 0—the call returns only after Two values used: 0 and 128,
the connection to the server is which causes a timeout after 2
established. minutes.

objWbemNamedValueSet Undefined.	 An SWbemNamedValueSet
object.

The first parameter that can be used is the name of the server to which you want to connect.
If you do not specify a name for the computer, you will simply connect to the local machine.
In the AssociatorsOfW32SystemDriver.vbs script, I am connecting to a remote computer
named Acapulco. This is the only parameter specified for the ConnectServer method, after I cre
ate an instance of the SWbemLocator object. The query that is made is an associators type of
query—in particular, I am interested in finding an association between the name of a particular
system driver and the plug and play entity it is related to. The variable strDriver holds the
name of a specific system driver on the Acapulco computer. The next script we will examine
will produce a list of all the system drivers on the machine. From that listing you could easily
find the name of the driver needed in the AssociatorsOfW32SystemDriver.vbs script.

I capture the name of the computer system in a variable called strSYS and print it out at the top
of the output. The problem is that the computer name has a tendency to get buried in a mess
of data. To preempt that eventuality, I decided to center the name of the computer system at

128 Part III: Connect Server and Additional Privileges
the top of the output. I use two functions to accomplish this task. The first function gets the
length of each service name, and the second function obtains the length of the computer
name and compares it with the length of the longest description—arriving at the appropriate
amount of space.

AssociatorsOfW32SystemDriver.vbs

strComputer = "acapulco"

strDriver = "'sysaudio'"

wmiQuery = "associators of {Win32_SystemDriver.Name="&strDriver&"}"_

&" where assocClass=win32_SystemDriverPNPEntity role=Dependent"

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

With objItem

strSys = .systemName :funLen(.systemName)

strMSG = strMSG & .service & vbcrlf :funLen(.service)

strMSG = strMSG & vbtab &.deviceID & vbcrlf:funLen(.deviceID)

strMSG = strMSG & vbtab & .manufacturer & vbcrlf:funLen(.manufacturer)

strMSG = strMSG & vbtab & .name & vbcrlf:funLen(.name)

End with

Next

WScript.echo Space(funCenter(intL)) & strSYS & vbcrlf & strMSG

'+++ Functions below +++

Function funLen(msg)

If Len(msg) > intL Then intL = Len(msg)

funLen = intL

End Function

Function funCenter(intL)'used to get space value used to center name

intL = (intL)/2 'gives 1/2 of longest line

intL = intL - (Len(strSYS)/2)'get 1/2 if sysName sub from intL

funCenter = intL

End function

To use the AssociatorsOfW32SystemDrivers.vbs script, you need to know the name of a run
ning system driver. Use the RunningSystemDrivers.vbs script to obtain the actual name of the
system driver you are interested in exploring. The RunningSystemDrivers.vbs script prints out
a listing of each of the system drivers that are in a running state. It does this by using the
Win32_SystemDriver class and printing out the Name and Description properties. To line up the
description field on the right side of the printout, use a function that determines the length of
the Name property and subtracts from a variable called intD that is fed to the space function to
align the descriptions.

RunningSystemDrivers.vbs

strComputer = "."

vWhere = "state = 'running'"

wmiQuery = "Select name, description from win32_systemDriver where "& Vwhere

Chapter 6: Using the SWbemLocator Methods 129
Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

With objItem

intD = funTab(Len(.name))'obtain number of spaces required for alignment

WScript.echo .name & ": " & Space(intD) & .description

End with

Next

'#### tab output function below

Function funTab(funT)

Dim xfunT

xfunT = intL - funt

If xfunT<=0 Then 'catches a negative tab value

WScript.echo "******* intL Tab value should be: " & funT +1 'Tell you value for intL

funTab=1

else

funTab=xfunT

End if

End function

The namespace is the second parameter that can be specified. You can specify the name of the
namespace that provides support for the class you want to use. If the class resides in the
root\cimv2 namespace, you can omit the namespace because this is the default in Windows
2000, Windows XP, and Windows Server 2003. If you are not working in the default
namespace, you need to specify this value.

The next value you can specify is the user name. This is the name of the user whose creden
tials you want to use. It is best to specify this name in the domain\username format. If you leave
this field blank, the script will use the current security context. It is important to note that you
can specify alternative credentials only when you are making a remote connection. If you try
to specify a different user name/password context with a local connection, the script will fail.
If you are using Windows XP or Windows Server 2003, you can use the universal principal
name (UPN) format for the user name.

After you specify the user name, the next field is the password. If you leave the password
blank, you also need to leave the user name blank, and the connection will use the current
security context. If you specify a user name, you also need to specify a password.

The field after the password is the locale settings. If you want to use the current locale, leave
this field blank. If you need an alternative locale, you can specify it by using the Microsoft
locale identifier for the desired language. For example, the code for U.S. English is MS_409.
You can find code page identifiers on MSDN.

The authority field is used to specify a Kerberos principal name. A Kerberos principal name
contains the word Kerberos followed by a colon and the name of the server to which you are
connecting. In the W32DiskDriveUseKerberos.vbs script you can see this string contained in

130 Part III: Connect Server and Additional Privileges
the variable strAuth. Because I am using Kerberos in the script, I can also use a UPN, as is
shown in the strUsr variable. If you do not use a UPN, it is perfectly acceptable to use the
domain\username form of supplying credentials.

W32DiskDriveUseKerberos.vbs

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_DiskDrive"

strUsr ="londonadmin@nwtraders.msft"'Blank for current security. Domain\Username

strPWD = "P@ssw0rd"'Blank for current security.

strLocl = "MS_409" 'US English. Can leave blank for current language

strAuth = "kerberos:acapulco"'if specify domain in strUsr this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection) 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS, _

strUsr, strPWD, strLocl, strAuth, iFLag)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "BytesPerSector: " & objItem.BytesPerSector

wscript.echo "Capabilities: " & join(objItem.Capabilities)

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "Index: " & objItem.Index

wscript.echo "InterfaceType: " & objItem.InterfaceType

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "MediaType: " & objItem.MediaType

wscript.echo "Model: " & objItem.Model

wscript.echo "Name: " & objItem.Name

wscript.echo "Partitions: " & objItem.Partitions

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "SectorsPerTrack: " & objItem.SectorsPerTrack

wscript.echo "Signature: " & objItem.Signature

wscript.echo "Size: " & objItem.Size

wscript.echo "Status: " & objItem.Status

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "TotalCylinders: " & objItem.TotalCylinders

wscript.echo "TotalHeads: " & objItem.TotalHeads

wscript.echo "TotalSectors: " & objItem.TotalSectors

wscript.echo "TotalTracks: " & objItem.TotalTracks

wscript.echo "TracksPerCylinder: " & objItem.TracksPerCylinder

wscript.echo " "

Next

In addition, you can simply leave the user name blank, as well as the password, to use the cur-
rent security context. If this field contains anything other than a Kerberos principal name, NT
LAN Manager (NTLM) authentication will be used and this field should contain an NTLM
domain name. The easiest way to use this field is to specify the domain name when you specify
the user name and to leave this field blank. As shown in Figure 6-1, the RoutingTableNTLM.vbs
script retrieves the routing table from a remote computer, which is the same as doing a route
print locally on the machine.

Chapter 6: Using the SWbemLocator Methods 131
Figure 6-1 Routing table showing all the routes currently defined on the machine

In the RoutingTableNTLM.vbs script, I specify the use of NTLM authentication by using the
phrase NTLMDomain:domainname. The domain name used is the domain you wish to use to
do the authentication. To use the RoutingTableNTLM.vbs script, you must have a second
computer in your domain. You must change the value of strComputer to be equal to that of the
remote machine. If you do not have communication with the remote computer, the script will
fail. WMI does not allow you to specify alternate credentials for a local connection, so it must
be a remote physical machine.

RoutingTableNTLM.vbs

Const intMin = 3600'converts seconds to minutes

strComputer = "acapulco" 'A remote computer

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_IP4RouteTable"

strUsr ="LondonAdmin"'Blank for current security. Domain\Username

strPWD = "P@ssw0rd"'Blank for current security.

strLocl = "MS_409" 'US English. Can leave blank for current language

strAuth = "NTLMDomain:nwtraders"'if specify domain in strUsr this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection) 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS, _

strUsr, strPWD, strLocl, strAuth, iFLag)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "Age in Minutes: " & int(objItem.Age/intMin)

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "Description: " & objItem.Description

WScript.Echo "Destination: " & objItem.Destination

WScript.Echo "InterfaceIndex: " & objItem.InterfaceIndex

WScript.Echo "Mask: " & objItem.Mask

WScript.Echo "Metric1: " & objItem.Metric1

WScript.Echo "Metric2: " & objItem.Metric2

WScript.Echo "Metric3: " & objItem.Metric3

WScript.Echo "Metric4: " & objItem.Metric4

WScript.Echo "Metric5: " & objItem.Metric5

WScript.Echo "Name: " & objItem.Name

WScript.Echo "NextHop: " & objItem.NextHop

WScript.Echo "Protocol: " & objItem.Protocol

132 Part III: Connect Server and Additional Privileges
WScript.Echo "Type: " & objItem.Type

WScript.Echo

Next

Following the domain name field, you have the option of specifying a security flag. If you spec
ify a value of 0 for this parameter, the call to ConnectServer will return only after the connection
has been established. This can result in the call hanging indefinitely if the connection is not
established. The only other value for this field is 128 (0x80). When you use this parameter,
the call will wait two minutes before timing out. In the ProgramGroups.vbs script, I leave the
authentication field blank because I am not assigning a value to the strAuth variable. I assign
the value 128 to the iFlag variable. This causes the script to time out within two minutes of
attempting a connection to a remote computer. The timeout value of two minutes does not
mean the script will time out in two minutes. It means the connection attempt will timeout in
two minutes if the remote computer is unavailable. In the ProgramGroups.vbs script below,
the script has to do a lot of work to gather the available program groups installed on the
machine. It will take four or five minutes depending on the speed of the computer, and the
amount of information installed on the machine.

ProgramGroups.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_ProgramGroup"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "128" 'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objdictionary = CreateObject("scripting.dictionary")

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS, _

strUsr, strPWD, strLocl, strAuth, iFLag)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

If objdictionary.Exists(objItem.username) Then

strGroup = strGroup & objItem.GroupName & vbcrlf & vbtab

Else

objDictionary.add objItem.UserName, strgroup

strgroup = ""

End if

Next

colItem = objDictionary.Items

colKeys = objDictionary.Keys

For i = 0 To objDictionary.Count -1

Wscript.Echo "USER: " & colKeys(i) & vbcrlf & vbtab & colItem(i)

next

Chapter 6: Using the SWbemLocator Methods 133
The last property that you can specify is the objWbemNamedValue set, which is normally left
blank. This field can contain an SWbemNamedValueSet object that can represent the context
information to be used by the provider servicing the request. This information is dependent
upon the provider.

When you attempt to make a connection into WMI, the connection could possibly result in an
error. These errors are listed in Table 6-2.

Table 6-2 Error Messages

Error Number Meaning

wbemErrAccessDenied 0x80041003 The current or specified user name and pass-
word are not valid or authorized to make the
connection.

wbemErrFailed 0x80041001 Unspecified error.

wbemErrInvalidNamespace 0x8004100E The specified namespace does not exist on
the server.

wbemErrInvalidParameter 0x80041008 An invalid parameter was specified, or the
namespace could not be parsed.

wbemErrOutOfMemory 0x80041006 There is not enough memory to complete
the operation.

wbemErrTransportFailure 0x80041015 A networking error occurred, preventing
normal operation.

Error 0x80070005 is a COM access-denied error. When you make the connection into WMI
on a computer running Windows 95 from a Windows NT–type of system, you need to pay
attention to the credentials that are supplied. If the local system is supplying the user name
and the password of a domain of which the machine is not a member, synchronous queries
will take longer to process. If you supply the credentials in the connection, the logon will fail
with an error indicating that the remote procedure call (RPC) server is unavailable. Whenever
you see the RPC server unavailable error, you have failed to make the connection into WMI. If
you are making a connection between different domains, you must supply both the domain
name and the user name because pass-through authentication does not work.

Summary
In this chapter, we discussed using the SWbemLocator object. You saw that you can use the
ConnectServer method from the SWbemLocator object to specify alternate parameters when
making a connection into WMI. This includes specifying domain, name, and password for
remote connections. It also enables you to connect to different WMI namespaces and to set
a timeout value for the connection. In addition to these parameters, you can specify locale
settings.

134 Part III: Connect Server and Additional Privileges
Quiz Yourself
Q: What is the default WMI namespace used by the ConnectServer method?

A: The default WMI namespace used by the ConnectServer method depends on the oper
ating system because it uses the system defaults. On a server running Windows Server
2003, for example, the default WMI namespace is root\cimv2.

Q: To control the amount of time a script will spend waiting on a connection, which
parameter can you specify?

A: The only parameter you can use to control the connection timeout value is the iSecu
rity flag.

Q: What are the two possible values you can specify for the iSecurity flag?

A: The two values you can specify for the iSecurity flag parameter are 0 and 128—0 means
to wait forever, and 128 will cause a timeout after waiting two minutes.

On Your Own

Lab 13 Using the ConnectServer Method Locally

In this lab, you will use the ConnectServer method to develop a script that runs locally. As an
extra bonus, the script you develop here will become a ConnectServer template that you can
use to develop other scripts that need to use the ConnectServer method of the SWbemLocator
object. You will make those changes in the next lab.

1. Open the wmiTemplate.vbs script, and save it as StudentLab13.vbs.

2. Turn off On Error Resume Next.

3.	 Declare variables to hold each of the seven parameters used for the ConnectServer
method. Because you already have two variables you can use (strComputer and wmiNS),
you need to add only five new variables: strUsr, strPWD, strLocl, strAuth, and iFlag. Place
these variables under the wmiNS variable in the header section of your script.

4.	 Under the wmiNS = “\root\cimv2” line, add each of your new variables and assign them
a value of ““. The only exception to this is the iFlag variable, which does not permit a null
value. For the iFlag variable, specify a value of 0. Your code will look like the following:

strUsr =""

strPWD = ""

strLocl = ""

strAuth = ""

iFlag = "0"

Chapter 6: Using the SWbemLocator Methods 135
5.	 Because you will use this as a template in the future, add some comments describing the
use of each parameter. Review this chapter if you need some hints. Once completed,
your code might look something like the following:

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "" 'MS_409 is U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0"

'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

6. Save your work. Do not run this script—you will get errors at this point.

7.	 Add code to create an SWbemLocator object. Place this line of code just above the Set
objWMIService line. Assign it to a variable called objLocator. The SWbemLocator object
has a program ID of WbemScripting. Your code to do this will look like the following:

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

8. Declare the objLocator variable.

9.	 The Set objWMIService line of code is used to obtain a connection into WMI. You do not
want to use the moniker here; rather, you are going to use the ConnectServer method.
Use the variable and avoid some typing. Keep the Set objWMIService = part, and delete
everything to the end of the line.

10. Use the objLocator object you created in step 7, and then use the ConnectServer method.
Specify each of the seven parameters for this method. When done, your code will look
like the following:

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS, _

strUsr, strPWD, strLocl, strAuth, iFlag)

11. Inside the For Each Next loop, comment out all the Wscript.Echo statements.

12. Add the last part of the WMI class name to the WMI query. You are going to look at
Win32_CurrentTime, so the query will look like the following when you are done:

wmiQuery = "Select * from win32_currentTime"

13. Look up Win32_CurrentTime in the Platform SDK. Identify the properties that tell you
the following: day, time, hour, minute, month, and year. Add them to the Wscript.Echo
section of your script. The Wscript.Echo section will look like the following when you are
done:

Wscript.Echo ": " & objItem.Day

Wscript.Echo ": " & objItem.DayOfWeek

Wscript.Echo ": " & objItem.Hour

Wscript.Echo ": " & objItem.Minute

Wscript.Echo ": " & objItem.Month

Wscript.Echo ": " & objItem.Year

136 Part III: Connect Server and Additional Privileges
14. Save and run the script. You might want to modify the output so it is more readable.
After a little bit of cleanup my script looks like the following:

Wscript.Echo objItem.Day & "/" & objItem.Month & "/"&objItem.Year _

& " " & objItem.Hour & ":" & objItem.Minute

Wscript.Echo "Day of the week is : " & objItem.DayOfWeek

15. Save the script.

Lab 14 Using Alternate Credentials in a Script

In this lab, you will write a script that uses alternate credentials to run against a remote
machine. You must have either a second computer or a virtual machine you can communicate
with to specify alternate credentials using the ConnectServer method. If you try to run this
script against your local machine, it will fail. In the process of writing this script, you will
develop a ConnectServer template script.

1. Open the SolutionLab13.vbs script, and save it as StudentLab14a.vbs.

2. Turn off On Error Resume Next.

3.	 On the wmiQuery line, delete the CurrentTime portion of the WMI class name. Ensure
you do not delete the trailing quote. The line will look like the following:

"Select * from win32_"

4.	 Remove the Wscript.Echo section. Replace it with a couple of Wscript.Echo commands
that echo out objItem as shown in the following code:

Wscript.Echo "" & objItem.

WScript.echo "" & objItem.

5. Save your work.

6. Change the wmiQuery so it points to Win32_LogicalDisk. It will look like the following:

wmiQuery = "Select * from win32_logicalDisk"

7.	 Add two property names to the Wscript.Echo statements: name and freespace. The two
commands will look like the following:

Wscript.Echo "" & objItem.name

WScript.echo "" & objItem.freespace

8. Run the script.

9.	 So far, so good. Now tighten up the code a little more. Begin by using With and End With.
To do so, you can use a lesser known feature of VBScript, the colon separator. This will give
you real tight code in the worker section of the script. The colon acts like an end-of-line
separator. You will use it on the For Each line. The modification looks like the following:

For Each objItem in colItems:With objitem

Chapter 6: Using the SWbemLocator Methods 137
10. Using the With command enables you to erase the repetition of the objItem identifier in
each of the output phrases. When working with large classes, this can save lots of typing.
The revised Wscript.Echo statements now look like the following:

Wscript.Echo ": " & .name

WScript.echo ": " & .freespace

11. Conclude the With section by using End With. Place it before the final Next statement
and use a colon to separate the two. The code looks like the following:

end with:Next

12. Run your script. You should get a listing of all the drives on your system and the associ
ated free space.

13. To complete the transition to a template, erase the class name and the properties you
added in steps 6 and 7. These were for testing. The completed template script will now
look like the following:

Option Explicit

'On Error Resume Next

dim strComputer

dim wmiNS

dim wmiQuery

dim objWMIService

Dim objLocator

dim colItems

dim objItem

Dim strUsr, strPWD, strLocl, strAuth, iFlag 'connect server parameters

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0"

'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS, _

strUsr, strPWD, strLocl, strAuth, iFlag)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems:With objitem

'Wscript.Echo ": " & .

'WScript.echo ": " & .

end with:Next

14. Of course, the template script will not run because you have removed the class name
and all associated properties. Save this with a name indicating that it is a ConnectServer
template script.

Chapter 7

Requesting Additional
Privileges for WMI

In Chapter 6, we looked at using the locator object to make a remote connection into Win-
dows Management Instrumentation (WMI). We examined how the ConnectServer method
enables us to specify alternative credentials when connecting remotely. This gives us the
advantage of being able to run scripts with the fewest elevated privileges. To continue looking
at the privileges required to work with WMI, in this chapter we examine the privilege struc-
ture.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of writing WMI queries

■ The use of the ConnectServer method

■ The use of the moniker

After you complete this chapter, you will be familiar with the following concepts:

■ The concept of least privilege in WMI

■ Determining the privileges required for an operation

■ The ways of specifying additional privileges

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter07 folder.
139

140 Part III: Connect Server and Additional Privileges
Understanding Privileges
Privileged operations are those that require the specification of special access. The ability to
elevate privileges and perform administrative operations is one of the changes made from ear-
lier versions of the software. If I want to write a script that shuts down the server, I have to
specify the Shutdown privilege. But what exactly does this mean? For one thing, it means a spe-
cial privilege to shut down the server exists. Privileges are different from rights or access per-
missions; when you have specific privileges you are allowed to perform specific privileged
operations. Users gain many privileges through group membership, but some privileges are
specified individually.

The important thing to know about privileges is that unless you have the privilege you cannot
use the privileged operation. For example, this means that I cannot specify a privilege in a
script unless the user running the script already has the privilege. If the user has the privilege,
why do we need to specify the privilege in the script? The idea is to operate with the least
amount of privilege—we specify only the privileges the script needs to run.

Privileges give users the ability to do certain actions. For instance, a user might have the priv-
ilege to shut down the system, load a driver, or set the system time, each of which is a separate
privilege.

Let’s look at the concept of working with least privilege. If you visit a large city on vacation or
for work, you will no doubt carry your wallet—which is loaded with privileges. Credit cards,
identification papers, and cash are among the various privileges commonly found in a wallet.
These privileges give you the ability to perform privileged operations—purchase items, drive
vehicles, or gain entrance into buildings. If you are like most people, when you leave a hotel
room, you lock up most of your privileges in the hotel safe and carry with you only the privi-
leges you need to perform a few specific operations. For example, you might want to go out to
eat, so you carry a credit card, identification, and your hotel room key. These are the least priv-
ileges you can carry to perform the intended operation; all the other privileges are safely
locked up. Notice that you cannot carry privileges you do not possess. So, if you do not have
a credit card, you cannot carry one. In a similar sense, if you do not possess the Shutdown priv-
ilege, you cannot specify it in your script.

The shift in the privilege structure in WMI occurs for the same reason you might leave items
locked up in a hotel safe—to safeguard them. If a script that has the ability to perform elevated
operations is compromised, it could have bad consequences. If a script that has permission
only to read information from specific namespaces is compromised, the bad effect can be min-
imized. The network administrator using WMI to work on the network must understand
which privileges are required to perform specific operations and how to invoke those privi-
leges when required.

Chapter 7: Requesting Additional Privileges for WMI 141
Quick Check

Q: What is an example of a privileged operation?

A: One privileged operation is the Shutdown privilege.

Q: Why were some privileges removed from a basic running WMI query?

A: Some privileges were removed from basic running WMI scripts as a security measure. To
perform certain privileged operations, the script writer must specifically request the privi-
lege prior to using it.

Obtaining a Collection of Privileges
When you use the Privilege property on a WMI security object, you get back an object that rep-
resents a collection of privileges. This object is called an SWbemPrivilegeSet. You need access to
the privilege set object so that you can work with privileges. You can obtain this collection at
many different levels in a script. The following objects can receive privilege assignments:

■ SWbemServices

■ SWbemObject

■ SWbemObjectSet

■ SWbemObjectPath

■ SWbemLocator

In each of these instances, you can add a privilege object by modifying the Privileges property
of the SWbemSecurity object. The security object is created when you access the Security_ prop-
erty on any of the preceding objects. In the PrivilegesAtSWbemService.vbs script, I create an
SWbemPrivilegeSet object on the SWbemServices object by using the Privileges command. This
is done at the security object that is created by using the Security_ command.

PrivilegesAtSWbemService.vbs

strComputer = "."

wmiNS = "\root\cimv2"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

set objWMISecurity = objWMIService.Security_.privileges

When you create a privilege object by using the WMI service object that comes back from
using the moniker, you use the Set command to hold the object that is returned. Next, you
assign a variable, and finally you specify the Privilege property on the security object of the
WMI service object. It gets a little complicated because three different objects are at work here
on a single line of code: an SWbemService object, an SWbemSecurity object, and an SWbem-
PrivilegeSet object. This is illustrated in the PrivilegesAtSWbemLocator.vbs script.

142 Part III: Connect Server and Additional Privileges
PrivilegesAtSWbemLocator.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, wmiNS, _

strUsr, strPWD, strLocl, strAuth, iFlag)

Set objWMISecurity = objWMIService.Security_.privileges

The actual code used to create a security object for the locator object is exactly the same as the
code used to create a security object for the moniker. You use the variable that contains the
SWbemLocator object, and then you use Security_ to create a security object. You add the Priv
ileges property to the security object, and, voila, you have a privilege object.

Because it is a collection, it has the Count property and several methods. An SWbemPrivilegeSet
object is a set of privilege override requests for a specific object. When an application pro-
gramming interface (API) call is made using this object, the privilege set is attempted. Obtain-
ing the privileges for any WMI object does not identify the privilege settings that are made on
the initial connection into WMI or the privileges in effect when an object is delivered to a sink.

Representing a Single Privilege
SWbemPrivilege is an object that represents a single privilege. It has several properties. You are
able to use these properties only after you have gotten the actual privilege object. To get a sin-
gle privilege, you can retrieve the collection of privileges and iterate through it. This is what I
do in the ListAllSWbemPrivileges.vbs script. I use the Privileges command at the security
object to retrieve a collection of privileges. Once I have this collection I use For Each Next to
walk through the collection. ObjItem is used to represent a single privilege, and it is here I can
examine the properties of the privilege object. These properties are as follows:

■ DisplayName

■ Identifier

■ IsEnabled

■ Name

ListAllSWbemPrivileges.vbs

strComputer = "."

wmiNS = "\root\cimv2"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

set objWMISecurity = objWMIService.Security_.privileges 'creates swbemPrivilegeSet

For i = 1 To 27

objWMISecurity.add(i)

Chapter 7: Requesting Additional Privileges for WMI 143
Next

WScript.echo "How Many Special Privileges? " & objWMISecurity.count

For Each objItem In objWMISecurity:With objItem

wscript.echo .identifier & vbtab & .name & vbtab & .displayname _

& vbtab & .isenabled

end with:next

The Name property is a string that is used to uniquely identify a particular privilege. You can
use this property when you need to refer to a specific privilege. This privilege controls whether
a user can execute a particular method. If you need to read from the security event log, you
need to specify the security privilege. The Privilege property itself is read-only.

Quick Check

Q: For what reason are privilege strings added to a script?

A: Privilege strings are added to a script to allow the script to execute special operations
such as reading from the security log or loading a driver.

Q: Name one easy way to retrieve a single privilege property in a script.

A: One easy way to retrieve a single privilege property in a script is to retrieve the entire priv-
ilege collection and iterate through it.

Adding Additional Privileges
There are two ways to add additional privileges to a script. You can use the Add method or the
AddAsString method. In most cases, which method you use is a matter of personal preference.
In some instances, it might make more sense to use one method rather than the other,
depending on where you actually want to specify the privilege. In this section, we examine
using the Add method and the AddAsString method to provide additional privileges.

Adding a Privilege with Add

The Add method is used to add an SWbemPrivilege object to the collection. To use the SWbem-
Privilege object to add objects, you need to use the WbemPrivilegeEnum constants. The soft-
ware development kit (SDK) has a list of the WbemPrivilegeEnum constants, but they are not
extremely useful in developing a Microsoft Visual Basic Scripting Edition (VBScript) script
because they are not available to a VBScript even though they are defined in the WMI script-
ing type library, Wbemdisp.tlb. The listing of WbemPrivilegeEnum constants can be used
directly with the Add method, or you can define your own constants and then use the numer-
ical value of the constant later in the script. The BackupAppLog.vbs script illustrates this tech-
nique.

144 Part III: Connect Server and Additional Privileges
BackupAppLog.vbs

strComputer = "."

wmiNS = "\root\cimv2"

Const backup = 16

wmiQuery = "select name from Win32_NTEventlogFile where Name like "

strEventLog = "'%AppEvent.Evt'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.execQuery(wmiQuery & strEventLog)

set objWMISecurity = objWMIService.Security_.privileges

objWMISecurity.add(backup)

subPrivileges

For Each objItem In colitems

errRTN = objItem.BackupEventLog("c:\fso\appLog.evt")

subError

next

Sub subPrivileges

WScript.echo objWMISecurity.count & " privilege exists"

For Each objItem In objWMISecurity:With objItem

wscript.echo .identifier & vbtab & .name & vbtab & .displayname _

& vbtab & "is it enabled? " & .isenabled

end with:Next

End Sub

Sub subError

Select Case errRTN

Case 0

wscript.echo"success!"

Case 8

wscript.echo"Privilege missing"

Case 21

wscript.echo"Invalid parameter"

Case 183

wscript.echo"Archive file name already exists"

Case Else

wscript.echo"unknown error occurred"

End Select

End sub

Adding a Privilege as a String

The AddAsString method requires you to use the privilege string. Privilege strings all begin
with the prefix se and end with the modifier privilege. You cannot use a WbemPrivilegeEnum
constant, nor can you use the numerical value of the constant directly when calling Add-
AsString. Use of AddAsString is illustrated in the ReadSecurityEventLog.vbs script. In this
script, I make a connection into WMI by using the moniker. I define a constant called Enable
that I set equal to true to make the code a little easier to read, though this certainly is not a
requirement for using the AddAsString method. Once I have the connection into WMI, I use
the Security_.privileges.addAsString method to add the SeSecurityPrivilege so I can read from the
security event log. I have a variable called strEventCode set equal to a particular event ID—529.
Event ID 529 is generated in response to a logon failure. Once the query is submitted, I use

Chapter 7: Requesting Additional Privileges for WMI 145
For Each Next to walk through the collection and print out the time the event occurred and the
message associated with the event.

ReadSecurityEventLog.vbs

strComputer = "."

strEventCode = "'529'"

wmiNS = "\root\cimv2"

wmiQuery = "SELECT * FROM Win32_NTLogEvent WHERE Logfile = 'security'"_

& "AND EventCode = " & strEventCode

Const Enable = "true" 'true will turn on the privilege, FALSE turns OFF

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

objWMIService.security_.Privileges.addASstring _

"seSecurityPrivilege", Enable

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo ": " & objItem.TimeGenerated

Wscript.Echo ": " & objItem.message

Next

Using the Item Method

The Item method is used to access a specific privilege. To use the Item method you must spe-
cifically identify the privilege that you want to query. In the UseItem.vbs script I want to see if
the script has the Backup privilege. To do this I specify objWMISecurity.item(backup). Backup is
a constant I set equal to 16, which is the value of the WbemPrivilegeBackup privilege. The
UseItem.vbs script obtains a privilege object by using objWMIService.security_.privileges. Once
I have the privilege object, I can work with it. In this script I verify the existence of the privi-
lege—if the privilege exists, the err object will contain a 0 when the Item method is used. If the
privilege does not exist, the err object will contain -2147217406, which translates into
80041002 when you send it into the hex function.

UseItem.vbs

Const backup=16

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_Win32_NTEventlogFile"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Set objWMISecurity = objWMIService.security_.privileges

'objWMISecurity.add(backup)

objWMISecurity.item(backup)

WScript.echo hex(Err.Number)

Using the DeleteAll Method

The DeleteAll method is used to delete all the privileges that are associated with the current
WMI session. To use the DeleteAll method you need to specify only the variable containing the
security object by using the DeleteAll command. No special return code comes back from

146 Part III: Connect Server and Additional Privileges
deleting all the privileges, so it is not necessary to capture a return code when calling DeleteAll.
If an error occurs while you are deleting the privileges, it will appear on the standard error
object.

In the script DeleteAllSWbemPrivileges.vbs I first add all the security privileges by using the
Add method. I use a For Next loop to cycle through the 27 numbers representing all the privi-
leges; in the middle of the loop I simply call the Add method. Once I have added all 27 privi-
leges, I go into a subroutine that uses the Count method to tell me how many privileges are
actually held. I print out a friendly message, allow the script to rest a little by using the Sleep
command, and then call the DeleteAll method to remove the 27 privileges I just added. Once
again I go into the SubCount to confirm the removal of all the privileges.

DeleteAllSWbemPrivileges.vbs

strComputer = "."

wmiNS = "\root\cimv2"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

set objWMISecurity = objWMIService.Security_.privileges

For i = 1 To 27

objWMISecurity.add(i)

Next

subCount

wscript.echo "wait while you delete Privileges":WScript.Sleep(1500)

objWMISecurity.deleteAll

subCount

Sub subCount 'uses count method to count privileges

WScript.echo "How Many Special Privileges? " & objWMISecurity.count

End sub

Removing a Specific Privilege

Sometimes you might add a privilege in one portion of a script and later need to remove the
privilege in other portions of the script. To remove a single privilege you use the Remove
method. In the RemovePrivilege.vbs script, I use the Add method to add a privilege. I go into
a subroutine that counts the number of privileges currently held. Once I exit the subroutine,
I pause script execution for a second and a half and then use the Remove method to delete the
privilege previously added. The pause is not required to remove a privilege; it is merely added
to make the script a bit more interesting as it runs. It enables you to watch as privileges are
added and removed.

RemovePrivilege.vbs

Const backup=16

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_Win32_NTEventlogFile"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Set objWMISecurity = objWMIService.security_.privileges

Chapter 7: Requesting Additional Privileges for WMI 147
objWMISecurity.add(backup)

subcount

WScript.sleep 1500:WScript.echo "deleting privilege"

objWMISecurity.remove(backup)

subCount

Sub subcount

wscript.echo "There is: " & objWMISecurity.count & " privileges"

End sub

Finding the Most Common Privileges

There are 27 different privileges. These are listed in Appendix B. You might wonder which are
the most important. Rather than give you an ambivalent “it depends” answer, I searched
through every Managed Object Format (MOF) file for every WMI class in the root\cimv2
namespace. The resulting list of operations and required privileges is contained in Appendix C.
This list tells you exactly which privilege you need to perform which operation. In the mean-
time, three privileges seem to stand out as the most often required. Indeed, if a network
administrator is required to perform a privileged operation, more than likely the privilege
needed is one of the following: Security, Loaddriver, or Shutdown.

Using Privileges
You can work with the security privileges in several ways. Of course, you have been working
with adding or requesting additional privileges, but you can also request the removal of priv-
ileges. If the operation you are attempting does not require a privilege you currently hold, you
can request that the specific privilege be removed. You can use two methods to request addi-
tional privileges: make a request in the moniker or use SWbemLocator. Each is discussed in the
following subsections.

In the Moniker

On those occasions when you use the moniker to make your WMI connection, you might also
need to specify additional security privileges. I do not prefer this method because I think it is
rather ugly; you can make your own decision about its usefulness. The fact that you do not
have to define your own constant to use the security privilege is a key factor in using the secu-
rity string in the moniker. But you have to use a specific form of the privilege string—drop the
se prefix and the privilege suffix. By using this technique, the SeBackupPrivilege becomes sim-
ply the Backup privilege. To specify this privilege in the moniker, you must specify the imper-
sonation level—in this case it is ImpersonationLevel=impersonate, which is the default
impersonation level in Microsoft Windows 2000, Windows XP, and Windows Server 2003.
Because this is the default impersonation level, most of the time it is left out of the scripting
examples; however, it is required to be present if you wish to specify a privilege in the moniker.

148 Part III: Connect Server and Additional Privileges
The impersonation-level settings and the privilege specification are surrounded by curly
braces ({ }); the privilege is enclosed in parentheses. When it is all put together, you have the
winmgmts moniker, open curly brace, impersonation level, open parenthesis, privilege, close
parenthesis, close curly brace, a couple of backslashes, and then the path portion of the mon-
iker. This format is shown in the ClearEventLog.vbs script in which I use the ClearEventLog
method from the Win32_NTEventLogFile class. To use this method I must specify the Backup
privilege. When I call the ClearEventLog method, I have specified empty parentheses following
the method name; this, however, is not required because I already have a connection to the
specific event log. The Platform SDK states that the ClearEventLog method requires an input
parameter that tells it which log file to clear. Because I have a connection to the specific event
log, I can simply call the method without supplying any input parameters.

ClearEventLog.vbs

strComputer = "."

wmiNS = "\root\cimv2"

LogFile = "'application'"

wmiQuery = "Select * from win32_NTEventlogFile where " & _

"LogfileName = "& LogFile

Set objWMIService = GetObject("winmgmts:"&_

"{impersonationLevel=impersonate,(backup)}\\" & _

strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

rtnCode = objItem.ClearEventLog()

WScript.echo rtnCode

Next

Using SWbemLocator

If you use the SWbemLocator method to make a connection into WMI and you wish to per-
form privileged operations, you can add privileges by creating a security object and modifying
the Privilege property. This works in exactly the same way as was discussed earlier because
you are really performing the same operation—adding privileges at the SWbemSecurity level.

In the AddPrinterPort.vbs script, I define a constant called LoadDriver. I set this to 9, which is
equivalent to the value of the SeLoadDriverPrivilege privilege string. To add a new printer port,
I need to create a new instance of the Win32_TcpIpPrinterPort class; I do this by using Spawn-
Instance because there is no AddPrinterPort method for this class. Once I have a new copy of
the Win32_TcpIpPrinterPort class, I set the values for the properties I am concerned with:
Name, Protocol, HostAddress, PortNumber, and SnmpEnabled. Once I have assigned the values
required for the new printer port, I use the Put_ method to write it to WMI.

AddPrinterPort.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "win32_TcpIpPrinterPort"

strUsr =""'Blank for current security. Domain\Username

Chapter 7: Requesting Additional Privileges for WMI 149
strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English.

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" '(wait for connection), 128 (wait max two min)

Const LoadDriver = 9 '9 is equal to SeLoadDriverPrivilege

Const TcpPORT = "111.111.111.111" 'IP address

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer,_

wmiNS, strUsr, strPWD, strLocl, strAuth, iFlag)

Set objWMISecurity =objWMIService.Security_.privileges

WScript.echo objWMISecurity.count 'debug

objWMISecurity.add(LoadDriver)

WScript.echo objWMISecurity.count 'debug

Set objItem = objWMIService.Get(wmiQuery).SpawnInstance_

objItem.Name = "IP_"& TcpPORT

objItem.Protocol = 1 '1 is raw, 2 is lpr

objItem.HostAddress = TcpPORT

objItem.PortNumber = "9100" 'default

objItem.SNMPEnabled = False

objItem.Put_

The other method for adding privileges when using SWbemLocator is to use the AddAsString
method. The AddAsString method, examined earlier in this chapter, works exactly the same as
creating a security object and modifying the Privilege property. In the script ChangeSystem-
StartUp.vbs I use the AddAsString method to add the SeSystemEnvironmentPrivilege to enable
me to modify the amount of time the computer displays the startup options when it first boots
up. Of course, you can manually adjust this property in Control Panel by selecting System,
clicking the Advanced tab, and selecting Settings in the Startup And Recovery section. Once
you have navigated to this location, the Startup And Recovery dialog box appears, as shown in
Figure 7-1.

Pump Valve Control Loop

Pump
Valve

Level Control Loop

Level
Control
Valve

Overflow
Valve

Overflow Control Loop

Tank

Pump

Pump
Discharge

Pump Control Loop

Pump Discharge
Control Loop

Process Control
Computer

Figure 7-1 Manually setting startup delay times in the Startup And Recovery dialog box

150 Part III: Connect Server and Additional Privileges
ChangeSystemStartUp.vbs

strComputer = "mred" 'name of target computer

wmiNS = "\root\cimv2"

wmiQuery = "win32_ComputerSystem.name='" & strComputer & "'"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, _

wmiNS, strUsr, strPWD, strLocl, strAuth, iFlag)

Set objWMISecurity =objWMIService.Security_.privileges

Set objItem = objWMIService.get(wmiQuery)

WScript.echo objWMISecurity.count 'debug

objWMISecurity.addAsString("SeSystemEnvironmentPrivilege")

WScript.echo objWMISecurity.count 'debug

Set objItem = objWMIService.get(wmiQuery)

objItem.SystemStartupDelay=5

objItem.Put_

WScript.echo "SystemStartupDelay " & objItem.SystemStartupDelay

Quick Check

Q: What are the two methods you can use to add privileges to a script?

A: The two methods you can use to add privileges to a script are the Add method and the
AddAsString method.

Q: If you want to add privileges to a script that uses the moniker to connect into WMI, how
do you specify this privilege?

A: If you want to add privileges to a script that uses the moniker, you must specify the
impersonation level settings and the privilege surrounded by curly braces ({ }); the privilege
is enclosed in parentheses.

Summary
In this chapter, we looked at privileged operations in WMI. We examined the privileges
required for some of the different WMI classes. We looked at ways of enumerating all privi-
leges held by a script and discussed the different places in a script where privileges can be
added. We looked at several methods for adding privileges, including the Add and AddAsString
methods.

Chapter 7: Requesting Additional Privileges for WMI 151
Quiz Yourself
Q: What is required to use the Add method for obtaining elevated privileges?

A: To use the Add method to obtain elevated privileges, you can either directly use the
numeric value of one of the WbemPrivilegeEnum constants or define your own constant
and set it equal to the integer.

Q: When adding a privilege as a string, how do you write the privilege?

A: When adding a privilege as a string, you write the privilege in the form of seprivilege
nameprivilege.

Q: When adding a privilege in the moniker, in what form do you write the privilege?

A: When adding a privilege in the moniker, you drop the se prefix and the privilege suffix
so you are left with only the privilege name.

On Your Own

Lab 15 Setting the Page File Size

In this lab, you will configure the initial size of your page file. This lab assumes you have a page
file defined.

1. Open the WmiTemplate.vbs script, and save it as StudentCheckPageFile.vbs.

2.	 Edit the wmiQuery so that you are selecting just the name and the InitialSize from the
Win32_PageFileSetting class:

wmiQuery = "Select InitialSize, name from win32_PageFileSetting"

3.	 Inside the For Each Next loop, add InitialSize and Name to two of the objItem objects, so
they are echoed using Wscript.Echo. Add labels for the Echo commands. Remove the
unused objItem. commands. The For Each Next loop will look like the following when
you are finished:

For Each objItem in colItems

Wscript.Echo "Name: " & objItem.Name

Wscript.Echo "InitialSize: " & objItem.InitialSize

Next

4.	 Save and run the script. If you have a page file defined on your system, you will see it
reported. Copy the name of your page file because you will need it for the next script.

5.	 Now you are going to create another script. Open the ConnectServerTemplate.vbs
script, and save it as StudentLab15.vbs.

6. Declare a variable strPageFile and one called objWMISecurity.

152 Part III: Connect Server and Additional Privileges
7.	 In the reference section of your script, under wmiNS, assign the name of your page file
retrieved in step 4 to the variable strPageFile. Make sure you enclose the name in single
quotes padded with double quotes. On my computer it looks like the following:

strPageFile = "'c:\pagefile.sys'"

8.	 Modify the wmiQuery line to remove the Select * from portion. It will read simply Win32_.
Choose the Name property of the Win32_PageFileSetting class and specify the page file
you listed in step 7. Use this command with the Get method.

wmiQuery = "win32_PageFileSetting.name=" & strPageFile

9.	 Create a constant called CreatePageFile and set it equal to 14. You can place this line
below the iFlag = "0" line. This code looks like the following:

Const CreatePagefile = 14

10. Under the Set ObjWMIService line (make sure you do not break the command because it
continues to the next line) create a privilege set object by using the Privileges method on
the SWbemSecurity object. This command looks like the following:

Set objWMISecurity=objWMIService.security_.privileges

11. Go to the bottom of the script and create a subroutine called SubCheckPriv. In this sub-
routine echo the count of the objWMISecurity object you just created. This code looks
like the following:

Sub SubCheckPriv

WScript.echo "Privileges held: " & objWMISecurity.count

End sub

12. On the line below the one that creates the objWMISecurity object, first check for the
number of privileges held, add the CreatePageFile privilege you defined with your con-
stant, and finally check to ensure it was applied properly. These three lines of code look
like the following:

SubCheckPriv

objWMISecurity.add(CreatePagefile)

SubCheckPriv

13. Delete the entire For Each objItem in colItems Next loop, as well as the two Wscript.Echo
lines. The code you delete looks like the following:

For Each objItem in colItems

Wscript.Echo "" objItem.

WScript.echo "" objItem.

Next

14. Modify the Set colItems line so that you are setting objItem and using the Get method
instead of the ExecQuery method. The revised line of code will look like the following:

Set objItem = objWMIService.get(wmiQuery)

Chapter 7: Requesting Additional Privileges for WMI 153
15. Assign the InitialSize of your page file to objItem. Make sure the initial size is smaller than
the maximum size or you will get an error. I set mine to 150 megabytes (MB) by using
the following command:

objItem.InitialSize="150" 'size in MB

16. Use the Put_ method to write the change to WMI. The command is a simple
objItem.Put_.

17. Save and run your script. It should run without a problem.

18. Extra credit: Add a subroutine that checks the err object for errors. Check the err.number
and err.description. Call this sub after issuing the Put_ command.

Lab 16 Listing the Working Set

In this lab, you will add a privilege in the moniker. As you work through this lab, you will see
the procedure to add the impersonation levels, the privilege strings, and the curly braces.

1. Open the WmiTemplate.vbs file, and save it as StudentLab16.vbs.

2.	 Declare a variable called mytab. You can use the colon separator on the same line, and
assign Space(2) to be equal to mytab. It will look like the following:

Dim myTab:mytab=Space(2)

3. Turn off On Error Resume Next by remarking out the line.

4.	 Modify the wmiQuery line so that it selects Name, MinimumWorkingSetSize, and Maxi
mumWorkingSetSize from the Win32_Process class if the MinimumWorkingSetSize is
greater than zero. The query will look like the following:

wmiQuery = "Select name, MinimumWorkingSetSize," _

&"MaximumWorkingSetSize from win32_process" _

&" where MinimumWorkingSetSize >0"

5.	 Modify the Set objWMIService line so you add the Debug privilege. You will use the
default Impersonate impersonation level. The line will look like the following:

Set objWMIService = GetObject("winmgmts:" _

& "{impersonationLevel=impersonate,(DeBug)}!\\" _

& strComputer & wmiNS)

6.	 Add the three properties you selected in the wmiQuery to the output section of your
script. Delete the unused Wscript.Echo commands. Use myTab to space over the min and
max working sets. The completed code will look like the following:

For Each objItem in colItems

Wscript.Echo "name : " & objItem.name

Wscript.Echo mytab & "MinimumWorkingSetSize: " & objItem.MinimumWorkingSetSize

WScript.echo mytab & "MaximumWorkingSetSize " & objItem.MaximumWorkingSetSize

Next

7. Save and run the script.

P04622310.fm y, September 27, 2005 TuesdaPage 155 2:12 PM

Part IV
Classes

P04622310.fm y, September 27, 2005 TuesdaPage 156 2:12 PM

Chapter 8

Understanding WMI Classes

Classes provide the core functionality of Windows Management Instrumentation (WMI). But
how are classes organized? Most people do not realize that there is a pattern to the way WMI
classes are stored in the hierarchy. Once you recognize this pattern, you can open new vistas
in your scripting life. You can achieve self-actualization as a seasoned IT pro. You can…OK, you
get the idea.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of WMI scripting

■ The concept of WMI namespaces

■ How WMI providers work

After you complete this chapter, you will be familiar with the following concepts:

■ The use of WMI system classes

■ The basics of namespace security

■ How to set namespace security through scripting

■ How to determine effective user rights into a WMI connection

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter08 folder.

Using the System Classes
The system classes in WMI are all based on the Common Information Model (CIM) discussed
in Chapter 1. As you might recall, the CIM classes are designed to be copied—like a book of
patterns or templates. Some system classes always reside in every WMI namespace. These sys
tem classes are part of the core WMI functionality and are therefore not described in a Man-
157

158 Part IV: Classes
aged Object Format (MOF) file. If you create a new WMI namespace, these core system classes
are copied there when the namespace is built. The core system classes are used to provide
some basic functionality for WMI. They perform the following activities:

■ Event and provider registration

■ Security

■ Event notification

If you are wondering how you will be able to identify a system class, it is actually very easy—all
system classes are preceded with a double underscore (__). If you ever write your own WMI
class, make sure you do not give it a name that is preceded by a double underscore because
Mofcomp.exe ignores class names that begin with a double underscore. WMI reserves this
naming convention for WMI system class names.

Abstract Base Classes

The abstract base classes are classes that can serve only as the basis for a new class. You cannot
create an instance of an abstract class. If a class is an abstract class, the abstract qualifier is set.
You never use these classes in creating another WMI class. The only class that could even be
used to derive another class is the __NotifyStatus class, and if you need to do notification
actions, you are better off using the __ExtendedStatus class instead because it has far more prop
erties. The __SystemClass is used as the basis for all of the system classes that are not in the fol
lowing list. You cannot directly derive a class from the __SystemClass, but that is not really an
issue because if you are interested in the properties available from __SystemClass, you can
derive a class from a system class already derived from __SystemClass. (The __PARAMETERS
class shows up as all caps in the WMI namespaces, so I followed that convention.) The follow
ing are the abstract system base classes:

■ __NotifyStatus

■ __PARAMETERS

■ __SecurityRelatedClass

■ __SystemClass

■ __SystemSecurity

Using System Classes as Base Classes

Some system classes built into WMI perform vital day-to-day functions behind the scenes.
Most of these system classes stand alone—you cannot inherit properties from them, and you
cannot use their methods. A few, indeed, a very small subset of system WMI classes, are will
ing to share their properties, methods, and events. These system classes can be used as base
classes to enable you easily to create new event consumer types, event types, or error object
types. Additionally, you can use the __Namespace system class to create a new namespace in

Chapter 8: Understanding WMI Classes 159
WMI. This might be useful if you were creating a number of new WMI classes used to manage
a network. It might be a good idea to keep all these classes together in their own namespace.
That way, if things get out of hand, you can easily delete the entire namespace and roll back to
a previous level of functionality in your WMI infrastructure.

Identifying the Version of WMI

Most of the system classes are not usable as base classes for derived classes. This means you
simply cannot use them when you are trying to derive additional classes. These are classes
that seem to form core WMI functionality and would not make sense to be used as base
classes. This does not prevent you from using the classes, however.

The __CIMOMIdentification class provides good troubleshooting information about WMI on
your machine. It tells you when WMI was installed, the version that is currently running, and
even the version that was used to create the database. You can use this class in your script just
as you would use any other class. This is illustrated in the script CimomIdentification.vbs.
Because there is only one instance of WMI running on a machine at a time, you can use the
shorthand name @ to tell the script you want to retrieve the current running instance of WMI.
This shortcut refers to the current instance of WMI, making it very easy to use the Get method
instead of ExecQuery and having to loop the instance. To make the script a little easier to use,
I build a single variable strOut to use for the output. This is better than having to use
Wscript.echo many times to return the information retrieved from the query.

CimomIdentification.vbs

strComputer = "."

wmiNS = "\root\default"

wmiQuery = "__CIMOMIdentification=@"'only one instance of cimom

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

With objItem

strOut = "setupTime: " & .setupTime

strOut = strOut & vbcrlf &"setupDate: " & .setupDate

strOut = strOut & vbcrlf &"VersionCurrentlyRunning: " & .VersionCurrentlyRunning

strOut = strOut & vbcrlf &"versionUsedToCreateDB: " & .versionUsedToCreateDB

strOut = strOut & vbcrlf &"WorkingDirectory: " & .WorkingDirectory

end With

WScript.echo strOut

Working with System Security

Another useful base class is the __SystemSecurity class. Once again, this class is not usable as
a base class for other classes, but it does provide valuable information. Several methods are
exposed by the __SystemSecurity class. These methods enable you to set security access, get
security permissions, and identify security privileges held by the user trying to make the WMI
connection.

160 Part IV: Classes
Displaying the Security Information

In the script DisplaySecurityDescriptor.vbs, I use the GetSD method from the __SystemSecurity
class to obtain the security descriptor of a WMI namespace to which I am connected. In this
case, I am connected to the root\wmi namespace, but the script works with any namespace
that exists on your computer. The interesting thing about this particular script is you can use
it to set the security descriptor on another namespace or on another machine. This is actually
the easiest way to set namespace security in WMI.

DisplaySecurityDescriptor.vbs

strComputer = "."

wmiNS = "\root\wmi"

wmiQuery = "__SystemSecurity=@"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.Get(wmiQuery)

intRTN = objItem.getSD(arrSD)

For I = 0 To UBound(arrSD)

intSD = intSD & arrSD(i)

If I <> Ubound(arrSD) Then

intSD = intSD & ","

End If

Next

WScript.echo intSD

As shown in Figure 8-1, the Security tab can be accessed from the WMI Control Properties dia
log box. Once you select the Security tab, the Security For dialog box appears. This enables
you to add users or modify security already in effect for groups or individuals.

Figure 8-1 Manually setting security on namespaces in the WMI Security dialog box

Chapter 8: Understanding WMI Classes 161
Setting the Security Information

Once you have retrieved the security descriptor by using the DisplaySecurityDescriptor.vbs
script, you can use the returned value to set the security on another WMI namespace—either
on the same computer or on another computer—if the same users exist. The procedure is
something like the following:

1.	 Use the WMI Control Properties dialog box to configure security on the namespace in
the manner you wish it to be. Add users and grant rights as required.

2. Use the DisplaySecurityDescriptor.vbs script to retrieve the security descriptor.

3.	 Use the SetSecurityDescriptor.vbs script to set security on the target namespace or com
puter.

4.	 Open the WMI Control Properties dialog box on the target computer or in the
namespace to ensure that rights are as expected.

Keep in mind the security descriptor is returned as an array data type. You have to use the
Array command when you set it using the SetSD method. You can combine the two scripts,
retrieve the security descriptor from one computer, and use it to set the security descriptor on
another computer so that you are able to share the security descriptor value between the two
computers and not have to type it in (or paste it in) as shown in the SetSecurityDescriptor.vbs
script.

SetSecurityDescriptor.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "__SystemSecurity=@"

arSD= array(1,0,4,128,184,0,0,0,200,0,0,0,0,0,0,0,20,0,0,0,2,0,164,0,6,0,0,0,0,0,36,

0,35,0,0,0,1,5,0,0,0,0,0,5,21,0,0,0,182,68,228,35,192,133,56,93,22,192,234,50,248,

3,0,0,0,2,36,0,32,0,2,0,1,5,0,0,0,0,0,5,21,0,0,0,160,101,207,126,120,75,155,95,231,

124,135,112,149,89,0,0,0,18,24,0,63,0,6,0,1,2,0,0,0,0,0,5,32,0,0,0,32,2,0,0,0,18,

20,0,19,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,18,20,0,19,0,0,0,1,1,0,0,0,0,0,5,20,0,0,

0,0,18,20,0,19,0,0,0,1,1,0,0,0,0,0,5,19,0,0,0,1,2,0,0,0,0,0,5,32,0,0,0,32,2,0,0,

1, 2,0,0,0,0,0,5,32,0,0,0,32,2,0,0)

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.Get(wmiQuery) ' note using Get not ExecQuery

WScript.Echo "Preparing to change the SD"

SubChangeSD

Sub SubChangeSD

errReturn = colItems.SetSD(arSD)

If Err <> 0 Then

WScript.Echo "Method returned error " & errReturn

Else

WScript.Echo "SD was changed"

End If

End sub

162 Part IV: Classes
Identifying the Caller’s Rights

To identify the rights a user has in a namespace, you can use the GetCallerAccessRights method.
All users have the right to call this method because it is required to enable them to determine
whether they are allowed into the namespace. The rights are returned in hexadecimal and are
additive. Table 8-1 lists the rights and the hexadecimal values that come back from the Get-
CallerAccessRights method. Because the values are additive, if you had only the
WBEM_ENABLE and the WBEM_METHOD_EXECUTE access rights, for instance, GetCaller-
AccessRights would return 3.

Table 8-1 System Security Access Rights

Name Value Meaning

WBEM_ENABLE 0x1 Enables the account and grants the user read per-
missions; default access right for all users

WBEM_METHOD_EXECUTE 0x2 Allows the execution of methods

WBEM_FULL_WRITE_REP 0x4 Allows write to classes and instances except for
system classes

WBEM_PARTIAL_WRITE_REP 0x8 Allows write to provider instances but not static
classes or static instances to the repository

WBEM_WRITE_PROVIDER 0x10 Allows write to classes and instances to providers

WBEM_REMOTE_ACCESS 0x20 Allows remote operations granted by the permis-
sions set by other bits

READ_CONTROL 0x20000 Allows read access to the security descriptors

WRITE_DAC 0x40000 Allows write access to discretionary access control
lists (DACLs)

The script GetCallerRights.vbs uses the ConnectServer method of the SWbemLocator object. If
you try to use this method with the moniker, the only thing that returns is a 0 (no problem, but
no answer, either). The other thing that is a little strange about the GetCallerRights.vbs script is
the use of an output variable. In the line errRTN = objItem.GetCallerAccessRights(intRights), you
use the variable intRights to hold the output from running the GetCallerAccessRights command.
The variable errRTN holds the actual return code that comes back from running the command.
In most instances, it should be 0 (no errors) because all users should have the ability to run Get-
CallerAccessRights.

GetCallerRights.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "__SystemSecurity"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection),

128 (wait max two min)

Chapter 8: Understanding WMI Classes 163
Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, _

wmiNS, strUsr, strPWD, strLocl, strAuth, iFlag)

Set objItem = objWMIService.get(wmiQuery)

errRTN = objItem.GetCallerAccessRights(intRights)

If errRTN = 0 then

WScript.Echo "Calling users rights: " & intRights

Else

WScript.echo "error occurred. It was: " & errRTN

End if

Quick Check

Q: When using the __CIMOMIdentification class to retrieve information about the ver
sion of WMI, what does __CIMOMIdentification=@ mean?

A: When using the __CIMOMIdentification class to retrieve information about the version of
WMI, __CIMOMIdentification=@ means to use the current version of the installed instance
of WMI.

Q: Why might you simply receive a zero when trying to retrieve the effective calling user
rights by using the GetCallerAccessRights method from the __SystemSecurity class?

A: You might receive a zero when trying to retrieve the effective calling user rights by using
the GetCallerAccessRights method from the __SystemSecurity class for one of three reasons:
you are using the WMI moniker instead of the SWbemLocator method; you are echoing out
the return code instead of the output variable value; or the caller has no rights.

Understanding the CIM Classes
There are many CIM classes. For example, there are 286 CIM classes in the root\cimv2
namespace in a Microsoft Windows XP workstation installation. In many cases, CIM classes
look exactly the same as Win32 classes. These are the base classes upon which WMI in
Microsoft Windows is built. In this regard, they are organized in much the same way as the
Win32 classes are. The interesting thing is the way they are used. If you run a script that que
ries CIM_Card, such as the script CIM_Card.vbs, you might see such information as the serial
number and other data about the cards installed on the computer—provided the hardware
maker supports the class.

CIM_Card.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from cim_card"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "CreationClassName:" & objItem.CreationClassName

164 Part IV: Classes
Wscript.echo "Depth:" & objItem.Depth

Wscript.echo "Description:" & objItem.Description

Wscript.echo "Height:" & objItem.Height

Wscript.echo "HostingBoard:" & objItem.HostingBoard

Wscript.echo "HotSwappable:" & objItem.HotSwappable

Wscript.echo "InstallDate:" & objItem.InstallDate

Wscript.echo "Manufacturer:" & objItem.Manufacturer

Wscript.echo "Model:" & objItem.Model

Wscript.echo "Name:" & objItem.Name

Wscript.echo "OtherIdentifyingInfo:" & objItem.OtherIdentifyingInfo

Wscript.echo "PartNumber:" & objItem.PartNumber

Wscript.echo "PoweredOn:" & objItem.PoweredOn

Wscript.echo "Removable:" & objItem.Removable

Wscript.echo "Replaceable:" & objItem.Replaceable

Wscript.echo "RequirementsDescription:" & objItem.RequirementsDescription

Wscript.echo "RequiresDaughterBoard:" & objItem.RequiresDaughterBoard

Wscript.echo "SerialNumber:" & objItem.SerialNumber

Wscript.echo "SKU:" & objItem.SKU

Wscript.echo "SlotLayout:" & objItem.SlotLayout

Wscript.echo "SpecialRequirements:" & objItem.SpecialRequirements

Wscript.echo "Status:" & objItem.Status

Wscript.echo "Tag:" & objItem.Tag

Wscript.echo "Version:" & objItem.Version

Wscript.echo "Weight:" & objItem.Weight

Wscript.echo "Width:" & objItem.Width

Next

Close examination of the results will reveal that the query is actually fulfilled by the
Win32_BaseBoard class. The output tells you this in the CreationClassName property value
returned by the script. To verify the results, look at another script. In the Win32_Baseboard.vbs
script, there are 29 properties. The CIM_Card class has only 27 properties. The output for
CIM_Card.vbs returns values only for 27 properties—even though the query is actually serviced
by the Win32_BaseBoard class. The two unique properties supplied by the Win32_BaseBoard
class, ConfigOptions and Product, are returned only if the query is made directly against the
Win32_BaseBoard class as shown in the Win32_Baseboard.vbs script. The ConfigOptions prop
erty is returned as an array, so you need to use the Join function to turn it into a string that you
can easily print out.

Win32_Baseboard.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_BaseBoard"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "ConfigOptions:" & JOIN (objItem.ConfigOptions)

Wscript.echo "CreationClassName:" & objItem.CreationClassName

Wscript.echo "Depth:" & objItem.Depth

Wscript.echo "Description:" & objItem.Description

Chapter 8: Understanding WMI Classes 165
Wscript.echo "Height:" & objItem.Height

Wscript.echo "HostingBoard:" & objItem.HostingBoard

Wscript.echo "HotSwappable:" & objItem.HotSwappable

Wscript.echo "InstallDate:" & objItem.InstallDate

Wscript.echo "Manufacturer:" & objItem.Manufacturer

Wscript.echo "Model:" & objItem.Model

Wscript.echo "Name:" & objItem.Name

Wscript.echo "OtherIdentifyingInfo:" & objItem.OtherIdentifyingInfo

Wscript.echo "PartNumber:" & objItem.PartNumber

Wscript.echo "PoweredOn:" & objItem.PoweredOn

Wscript.echo "Product:" & objItem.Product

Wscript.echo "Removable:" & objItem.Removable

Wscript.echo "Replaceable:" & objItem.Replaceable

Wscript.echo "RequirementsDescription:" & objItem.RequirementsDescription

Wscript.echo "RequiresDaughterBoard:" & objItem.RequiresDaughterBoard

Wscript.echo "SerialNumber:" & objItem.SerialNumber

Wscript.echo "SKU:" & objItem.SKU

Wscript.echo "SlotLayout:" & objItem.SlotLayout

Wscript.echo "SpecialRequirements:" & objItem.SpecialRequirements

Wscript.echo "Status:" & objItem.Status

Wscript.echo "Tag:" & objItem.Tag

Wscript.echo "Version:" & objItem.Version

Wscript.echo "Weight:" & objItem.Weight

Wscript.echo "Width:" & objItem.Width

Next

CIM Classes Are Really DMTF Classes

The CIM classes were devised by the Distributed Management Task Force (DMTF), and they
form the basis of the WMI schema you use in the Windows operating system. In many cases,
a CIM class is used as a basis for a Win32 class that performs a similar function within the
schema. However, three-quarters of the CIM classes do not have a direct relation with a Win32
counterpart.

Consider the MonitorResolution Class

Suppose you are perusing the CIM classes and you run across the CIM_MonitorResolution
class. You think it looks nice, and you whip out the cimMonitorResolution.vbs script. You are
excited with the prospects of being able to utilize the information directly. When you run the
script, what to your wondering eyes should appear? Nothing!

cimMonitorResolution.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strFile = "'%boot.ini%'"

wmiQuery = "Select * from CIM_MonitorResolution"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "Description:" & objItem.Description

166 Part IV: Classes
Wscript.echo "HorizontalResolution:" & objItem.HorizontalResolution

Wscript.echo "MaxRefreshRate:" & objItem.MaxRefreshRate

Wscript.echo "MinRefreshRate:" & objItem.MinRefreshRate

Wscript.echo "RefreshRate:" & objItem.RefreshRate

Wscript.echo "ScanMode:" & objItem.ScanMode

Wscript.echo "SettingID:" & objItem.SettingID

Wscript.echo "VerticalResolution:" & objItem.VerticalResolution

Next

To confirm your suspicions, you use the Windows Management Instrumentation Tester
(Wbemtest.exe) and look up the CIM_MonitorResolution class in the root/cimv2 namespace.
The steps to do this are as follows:

1. Click Start, click Run, and type WbemTest.exe.

2. Click Connect.

3. Change the namespace from root\default to root\cimv2, and then click Connect.

4. Click Open Class, and type the name of the WMI class: CIM_MonitorResolution.

5. Click Instances.

The window shown in Figure 8-2 confirms you have no instances of the CIM_Monitor-
Resolution class implemented on your system.

Figure 8-2 Determining whether instances of a class exist on the computer

If you want to see whether another class is using CIM_MonitorResolution as a base class and is
inheriting all those wonderful properties, you can again turn to Wbemtest.exe. Open the
CIM_MonitorResolution class as indicated in the preceding steps. Once it is open, click the
Derived button on the right side of the screen, and the window shown in Figure 8-3 appears.

Chapter 8: Understanding WMI Classes 167
It is immediately obvious your investigation has come to an end—there are no derived classes.
CIM_MonitorResolution is not implemented in any way, shape, or form on your system.

Figure 8-3 Determining whether derived classes are in use on a computer

Quick Check

Q: What tool can you use to determine quickly whether an instance of a class exists on
your system?

A: The tool you can use to determine quickly whether an instance of a class exists on your
system is the Windows Management Instrumentation Tester (Wbemtest.exe). It is always
available on your computer.

Q: Why is it important to determine whether an instance of a class exists on your com
puter?

A: It is important to determine whether an instance of a class exists on your computer
because, if there are no instances, you are not able to perform a query of that class.

Summary
In this chapter, we looked at the way WMI classes are put together. We examined abstract
base classes and saw how they can be used in the formation of other WMI classes. We dis
cussed the system classes that WMI uses as the building blocks of WMI, as well as those that
are used to control the behavior of WMI. We determined which of these system classes you
can use to build other classes as required. Finally, we examined the concept of instances.

168 Part IV: Classes
Quiz Yourself
Q: What is the difference between an abstract WMI class and a regular WMI class?

A: The difference between an abstract WMI class and a regular WMI class is that an
abstract WMI class cannot have any instances.

Q: What does it mean for a WMI class to have instances?

A: When a WMI class has instances, it means the class is active on the computer and you
can query the properties of the class and use any methods it has implemented.

Q: What does it mean if a WMI class does not have instances?

A: If a WMI class does not have any instances, it might exist in the schema as an abstract
concept, but it has not been implemented into reality. If the class does not have
instances, you are not able to query against it.

Q: You want to use the __CIMOMIdentification class to determine the version of
WMI that is running. How can you use the Get method to retrieve this information?

A: If you want to use the __CIMOMIdentification class to determine the version of WMI
that is running using the Get method, you will need to use a query that specifies
__CIMOMIdentification=@.

Q: If you want to identify the security privileges a user has when making a WMI con
nection, which WMI class could you use?

A: To determine the security privileges a user has when making a WMI connection, you
could use the __SystemSecurity class.

On Your Own

Lab 17 Exploring Abstract Classes

In this lab, you will build a script that generates a list of abstract classes in a particular WMI
namespace.

1.	 Open the ConnectorServerTemplate.vbs script from the Lab 17 folder. Save it as
StudentLab17.vbs.

2.	 In the header section of the script, add some additional variables to be used in the script.
You need five additional variables: colClasses, strClass, a, strMsg, and strTab.

3.	 Just under the variable declarations, make strTab equal to a carriage return line feed and
a tab stop. Your code should look like the following:

strTab = VBcrlf & vbtab

Chapter 8: Understanding WMI Classes 169
4.	 At the bottom of the reference section where you assign values to the variables, just
below the iFlag="0" line, assign the value for strMsg. It will print out a line that heads the
list of abstract classes.

strMsg = "The following are abstract classes in the "_

& wmiNS & " namespace"

5.	 Open the SeparatorLinefunction.vbs script, and copy the FunLine function from the bot
tom of that script. The function looks like the following:

Function funLine(lineOfText)

Dim numEQs, separator, i

numEQs = Len(lineOfText)

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = lineOfText & vbcrlf & separator

End function

6.	 Go back to the StudentLab17.vbs script, and paste the FunLine function at the bottom of
your script.

7.	 Now that you have the separator line function in place, go back to the strMsg line and
use the function to underline the title of the report. The modified line of code looks like
the following:

strMsg = funLine("The following are abstract classes in the "_

& wmiNS & " namespace")

8.	 Set the colClasses variable to hold the collection of subclasses that comes back from
using the SubClassesOf method of the SWbemObject. It looks like the following:

Set colClasses = objWMIService.SubclassesOf()

9. Change the For Each objItem in ColItems line to read For Each strClass in colClasses.

10. Delete all the Wscript.echo commands.

11. Save and run the script. At this point, you should not see any errors. If you do, you need
to resolve them before continuing. (You can always look at the solution if you need to.)

12. Set the variable objItem equal to what comes back from using the Get method of the
SWbemObject to get the Class property from Path_. This code looks like the following:

Set objItem = objWMIService.get(strClass.path_.class)

13. Use For Each Next to walk through the collection of qualifiers. Use the variable a as the
counter. You get the collection of qualifiers by using the Qualifiers_ property of objItem
retrieved in the previous step. The code looks like the following:

For Each a In objItem.Qualifiers_

170 Part IV: Classes
14. Use the Instr command to filter out the word Abstract. This will be part of an If Then End
If command. It looks like the following:

If InStr(1,a.name,"abstract",1) Then

End If

15. You want to build an output variable so that the results come out in a single command.
Use strMSG, which at this point contains the title. Now add it to itself, use strTab, and
pick up the class name from the Path object. The line that does this goes between the If
Then command you used for the Instr command.

strMsg= strMsg & strTab & objItem.path_.class

16. Make sure you have closed all the For Next loops you used. The bottom section of the
code looks like the following:

For Each strClass in colClasses

Set objItem = objWMIService.get(strClass.path_.class)

For Each a In objItem.Qualifiers_

If InStr(1,a.name,"abstract",1) Then

strMsg= strMsg & strTab & objItem.path_.class

End if

Next

Next

17. Save and run the script. It should work just fine.

Lab 18 Examining WMI Classes

In this lab, you will use the Windows Management Instrumentation Tester (Wbemtest.exe) to
examine several WMI classes.

1. Launch Wbemtest.exe from a command-prompt window.

2.	 Once Wbemtest.exe is running, you need to connect to a WMI namespace. Click Con
nect.

3.	 The Connect dialog box appears. Root\Default is highlighted as the default namespace.
Unfortunately, setting a new default is not configurable. Change to the root\cimv2
namespace, and click Connect. You can leave all the other parameters for the connection
set to the default values.

4.	 Run the Lab17solution.vbs script to generate a list of abstract classes in the root\cimv2
namespace.

5. Find CIM_PhysicalMemory on the list. This indicates it has the abstract qualifier set.

6.	 In Wbemtest.exe, click Open Class, and type in the CIM_PhysicalMemory class, and
click OK.

Chapter 8: Understanding WMI Classes 171
7.	 The Object Editor For CIM_PhysicalMemory dialog box appears. In the upper pane,
examine the qualifiers that are set for this class. The qualifier you are looking for is
called Abstract. Is it present? It is. What is the value assigned to the qualifier? It is set to
True.

8. Look through the properties of the class. They are enumerated in the middle pane.

9.	 Click Instances on the right side of the Object Editor dialog box. Are there any instances
listed? No.

10. Close that dialog box, and click Derived. Are there any classes derived from
CIM_PhysicalMemory? Yes. This indicates the class is used as a base class for
Win32_PhysicalMemory.

11. Now you are going to explore two related classes in more detail. You can choose any
association class from the earlier list and see if it has a class derived from it by using
Wbemtest.exe. If you cannot find something, and your computer has a modem, you can
use CIM_PotsModem and Win32_PotsModem.

12. Open the CompareClasses.vbs script. Run it, and type in
CIM_PotsModem,Win32_PotsModem. This line needs to be exact because no error
checking is included in the script to filter out the input. Basically, this script compares
two classes that are derived from each other and prints out the unique properties.

13. Notice at the top of the output how many properties CIM_PotsModem has and how
many properties Win32_PotsModem has (36 versus 79).

14. Open the script PropertyExplorer.vbs, and then open and make a copy of the WmiTem
plate.vbs script.

15. Save the copy of the WmiTemplate.vbs script as StudentLab18A.vbs.

16. Go back to the PropertyExplorer.vbs script and run it. At the prompt, type
CIM_PotsModem, and click OK. A list of 36 Wscript.Echo commands will be returned.

17. Copy all the Wscript.Echo commands, and paste them into the StudentLab18A.vbs script
in the middle of the For Next loop. Replace the existing Wscript.Echo commands with
this text.

18. Change the wmiQuery command so that it is selecting everything from CIM_PotsModem.

19. Run the script. It should run fine and return a decent amount of information.

20. Determine where the StudentLab18A.vbs script is getting its information. Examine the
output for the CreationClassName property. You will see something that looks like the
following:

CreationClassName:Win32_PotsModem

21. By using this class, you are really using only a subset of the Win32_PotsModem class.

172 Part IV: Classes
22. Write another script that uses all of the available properties of the class. Open another
copy of the WmiTemplate.vbs script, and save it as StudentLab18B.vbs.

23. Run the PropertyExplorer.vbs script. This time feed in Win32_PotsModem.

24. Copy all the Wscript.Echo commands from the output.

25. Go back to the StudentLab18b.vbs script, and replace the existing Wscript.Echo com
mands from the template with the ones copied from the output of the PropertyEx
plorer.vbs script.

26. Change the wmiQuery so that it is pointing to the Win32_PotsModem class.

27. Save and run the script. You should see quite a bit more information from this script.

28. If you look at the top of the script, you will see you have On Error Resume Next turned on.
Turn off this command, and run the script. Now you will notice there is a problem—
three, to be exact. Three of the properties are stored as an array.

29. Two of these properties are right next to one another: DCB and Default. Use the Join
command so you can easily print out their values. The modified lines look like the fol
lowing:

Wscript.echo "DCB:" & join(objItem.DCB)

Wscript.echo "Default:" & join(objItem.Default)

30. The third array property in this class is the Properties property. Again, use the Join com
mand. The modified line of code now looks like the following:

Wscript.echo "Properties:" & Join(objItem.Properties)

31. Run the script again. Look for the output of the CreationClassName property. See where
it is pointing to: the Win32_PotsModem class.

This concludes this lab.

Chapter 9

Using Win32 WMI Classes

The Win32 Windows Management Instrumentation (WMI) classes can be categorized into
five groups of related services and functionality: software application classes, service manage
ment classes, hardware classes, operating system classes, and performance counter classes. To
a large extent, this is an arbitrary arrangement, but viewing classes in this manner enables us
to grasp more quickly the scope of capabilities provided by these classes.

The Win32 classes have either been extended or customized for the Microsoft Windows envi
ronment. In nearly every instance, they are built upon an underlying Common Information
Model (CIM) type of class. By understanding how these categories are put together, it
becomes much easier to locate and use the appropriate class for your scripts. As you look at
the way the classes are organized, you will see relations between the classes and the activities
you are trying to perform. In addition, you will be able to leverage the information you have
learned in the first part of the book. In this chapter, we look at two groups of classes—the soft-
ware application classes and the WMI service management classes. In Chapter 10, we look at
hardware classes; in Chapter 11, we look at the operating system classes; and in Chapter 12,
we look at the performance counter classes.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of the different types of classes

■ The basics of WMI namespace organization

■ How association classes work

■ Base classes and schema inheritance

After you complete this chapter, you will be familiar with the following concepts:

■ The classes provided by the Windows Installer provider

■ How to install the Windows Installer provider in Microsoft Windows Server 2003

■ How to change WMI configuration values by using a script
173

174 Part IV: Classes
Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter09 folder.

Working with Applications
For many network administrators, one of the most exciting groups of classes is the one sup-
plied by the Windows Installer provider. Also known as the MSI provider, this provider works
with applications that are configured to use the MSI software installation technology. The
great thing about this provider is you can obtain lots of information about the applications
installed on your computers, and you can even perform some of the same actions (such as
installing software and patching software). The MSI provider exposes to WMI the same func
tions that a developer would use when creating MSI packages—because of this, there is a vast
plethora of classes.

One of the more interesting classes available from the MSI provider is the
Win32_ShortCutAction class. Although this class can be used to create shortcuts for an MSI
software installation package, network administrators can use it to query and to retrieve some
rather cool information about software shortcuts on a computer.

In the DisplayShortCuts.vbs script, I use the Win32_ShortCutAction class to return shortcut
information. The results on my computer that runs Microsoft Windows XP were rather sur
prising. Because the script has to sort through a lot of data, it might take a minute or two to
run, so don’t get impatient. Once it comes back, on my computer it reported the following
information near the bottom of a 2383-line printout:

ActionID:Shortcut5{EEC2DAFD-5558-40AC-8E9C-5005C8F810E8}

==

Arguments:

Caption:Play the classic game of bowling with arcade-style action, 3D graphics, and sound.

Description:Play the classic game of bowling with arcade-

style action, 3D graphics, and sound.

Direction:

HotKey:

IconIndex:

Name:HYPERB~1|HyperBowl Plus! Edition

Shortcut:Shortcut5

ShowCmd:1

SoftwareElementID:

SoftwareElementState:

Target:[HYPERPATHDIR]\Hyperbowl.exe

TargetOperatingSystem:

Version:

WkDir:HYPERPATHDIR

ActionID:Shortcut6{EEC2DAFD-5558-40AC-8E9C-5005C8F810E8}

==

Arguments:

Caption:Test your skills for quick thinking and strategy in this fast-paced game.

Chapter 9: Using Win32 WMI Classes 175
Description:Test your skills for quick thinking and strategy in this fast-paced game.

Direction:

HotKey:

IconIndex:

Name:RUSSIA~1|Russian Square Plus! Edition

Shortcut:Shortcut6

ShowCmd:1

SoftwareElementID:

SoftwareElementState:

Target:[DIR54]\RussSqr.exe

TargetOperatingSystem:

Version:

WkDir:DIR54

This information is interesting because it relates to Figure 9-1. When you launch Games from
the Plus menu, a program switchboard appears. However, each of those links are viewed by
the Win32_ShortCutAction class as shortcuts. This class seems to find shortcuts that are inside
other programs—in addition to the standard shortcuts on the All Programs menu.

Figure 9-1 Shortcuts to games on the main menu for Microsoft Plus! Games

DisplayShortCuts.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_ShortCutAction"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.echo funLine("ActionID:" & objItem.ActionID)

Wscript.echo "Arguments:" & objItem.Arguments

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "Description:" & objItem.Description

176 Part IV: Classes
Wscript.echo "Direction:" & objItem.Direction

Wscript.echo "HotKey:" & objItem.HotKey

Wscript.echo "IconIndex:" & objItem.IconIndex

Wscript.echo "Name:" & objItem.Name

Wscript.echo "Shortcut:" & objItem.Shortcut

Wscript.echo "ShowCmd:" & objItem.ShowCmd

Wscript.echo "SoftwareElementID:" & objItem.SoftwareElementID

Wscript.echo "SoftwareElementState:" & objItem.SoftwareElementState

Wscript.echo "Target:" & objItem.Target

Wscript.echo "TargetOperatingSystem:" & objItem.TargetOperatingSystem

Wscript.echo "Version:" & objItem.Version

Wscript.echo "WkDir:" & objItem.WkDir

Next

'### functions below ###

Function funLine(lineOfText)

Dim numEQs, separator, i

numEQs = Len(lineOfText)

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = lineOfText & vbcrlf & separator

End function

Working with Software Classes

Several classes are used to represent software. Use of these classes can assist in software inven
tory, audit, and version control. To work with these classes and the software, you must install
them by using the Windows Installer.

Using the Win32_SoftwareElement Class

The Win32_SoftwareElement class provides very useful and interesting information. As shown
in the LookForInstalledPrograms.vbs script, you can tailor your query to return just about any
specific information desired. This is one script you do not want to run without filtering the
data returned. The first time I ran this script on my workstation without the Where clause, I
thought I had locked up the computer. It returned more than 60,000 lines of data, after eating
up all my CPU time for nearly five minutes. (But, on the other hand, I did have Microsoft Vir
tual PC, Microsoft Word, Outlook, Media Player, Internet Explorer, and the Platform SDK
open at the same time.)

In the LookForInstalledPrograms.vbs script, a couple of items are interesting. The first is the
FunFix function, which is used to permit users of the script to type in the name of the program
they are looking for instead of embedding the name in single quotes or using percent signs or
whichever exact form is required to make the script work. So, the FunFix function adds a
Where clause to the wmiQuery and uses the Like operator with the appropriate qualifiers.

The second thing that is interesting about the LookForInstalledPrograms.vbs script is the
FunTime function used to translate the Universal Time Coordinate (UTC) time format into
something more understandable. This function uses the SWbemDateTime object to perform

Chapter 9: Using Win32 WMI Classes 177
the conversion. The use of a function keeps the details of creating the object, creating the vari
ables, and using the methods out of the basic flow of the script. This promotes both readabil
ity and code re-use.

LookForInstalledPrograms.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strProg = funFix("Excel")

wmiQuery = "Select * from win32_SoftwareElement" & strProg

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.echo funLine("Attributes:" & objItem.Attributes)

Wscript.echo "BuildNumber:" & objItem.BuildNumber

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "CodeSet:" & objItem.CodeSet

Wscript.echo "Description:" & objItem.Description

Wscript.echo "IdentificationCode:" & objItem.IdentificationCode

Wscript.echo "InstallDate:" & funTime(objItem.InstallDate)

Wscript.echo "InstallState:" & objItem.InstallState

Wscript.echo "LanguageEdition:" & objItem.LanguageEdition

Wscript.echo "Manufacturer:" & objItem.Manufacturer

Wscript.echo "Name:" & objItem.Name

Wscript.echo "OtherTargetOS:" & objItem.OtherTargetOS

Wscript.echo "Path:" & objItem.Path

Wscript.echo "SerialNumber:" & objItem.SerialNumber

Wscript.echo "SoftwareElementID:" & objItem.SoftwareElementID

Wscript.echo "SoftwareElementState:" & objItem.SoftwareElementState

Wscript.echo "Status:" & objItem.Status

Wscript.echo "TargetOperatingSystem:" & objItem.TargetOperatingSystem

Wscript.echo "Version:" & objItem.Version

Next

'##### functions are Below #####

Function funLine(lineOfText)

Dim numEQs, separator, i

numEQs = Len(lineOfText)

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = lineOfText & vbcrlf & separator

End Function

Function funFix(strVar) 'adds in where clause

funFix = " where path like '%" & strVar & "%'"

End Function

Function FunTime(wmiTime) 'Used to translate Time

Dim objSWbemDateTime 'holds an swbemDateTime object.

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value=wmiTime

FunTime = objSWbemDateTime.GetVarDate

End Function

178 Part IV: Classes
Using the Win32_SoftwareFeature Class

The Win32_SoftwareFeature class provides some pretty cool information about the software
installed on your computer. One of the more interesting properties is the date the software
was last accessed. This information alone can be very valuable when it comes time to purchase
software upgrades or determine whether having a program installed on a machine is cost
effective. The SoftwareFeatures.vbs script illustrates using this class to retrieve this informa
tion. In this script, I once again use the FunTime function to translate the UTC time into a
more readable format. I use the FunLine function to underline the first property I retrieve—the
Accesses property. This separates the information retrieved into groupings of products. You
could, of course, rearrange the properties or even add your header to print out with each soft-
ware feature you retrieve.

SoftwareFeatures.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strVar = funFix("word") 'the product looked for

wmiQuery = "Select * from win32_SoftwareFeature" & strVar

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, _

wmiNS, strUsr, strPWD, strLocl, strAuth, iFlag)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.echo funLine("Accesses:" & objItem.Accesses)

Wscript.echo "Attributes:" & objItem.Attributes

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "Description:" & objItem.Description

Wscript.echo "IdentifyingNumber:" & objItem.IdentifyingNumber

Wscript.echo "InstallDate:" & funTime(objItem.InstallDate)

Wscript.echo "InstallState:" & objItem.InstallState

Wscript.echo "LastUse:" & funTime(objItem.LastUse)

Wscript.echo "Name:" & objItem.Name

Wscript.echo "ProductName:" & objItem.ProductName

Wscript.echo "Status:" & objItem.Status

Wscript.echo "Vendor:" & objItem.Vendor

Wscript.echo "Version:" & objItem.Version

Next

'### functions below ###

Function FunTime(wmiTime)

If wmiTime <> Null then

Dim objSWbemDateTime 'holds an swbemDateTime object. Used to translate Time

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value= wmiTime

Chapter 9: Using Win32 WMI Classes 179
FunTime = objSWbemDateTime.GetVarDate

End if

End Function

Function funLine(lineOfText)

Dim numEQs, separator, i

numEQs = Len(lineOfText)

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = lineOfText & vbcrlf & separator

End Function

Function funFix(strVar) 'adds in where clause

funFix = " where description like '%" & strVar & "%'"

End Function

Understanding the MSI Installer Provider

The MSI provider is not installed by default on a computer running Windows Server 2003.
Because the MSI installer provider contributes nearly 70 classes to the WMI installation, I rec
ommend it be added as part of the normal Windows Server 2003 build. There are two ways to
make sure the MSI Installer provider is installed on your system. As shown in Figure 9-2, you
can access the Add/Remove Windows Components from Add Or Remove Programs. In the
Windows Component Wizard, highlight (do not select the check box) Management And
Monitoring Tools, and then click Details. In the Management And Monitoring Tools dialog
box, select the WMI Windows Installer Provider check box, and then click OK twice. Once
you do this, you must reboot the computer to complete the installation.

Figure 9-2 Adding WMI Windows Installer Provider from Add Or Remove Programs in Control
Panel

180 Part IV: Classes
If you want to confirm the WMI Windows Installer provider is installed on the computer prior
to executing any queries that require its presence, you can write a quick program that queries
for instances of installed providers. In the script FindMSIProvider.vbs, I perform such a query.
By using the Instr function, I am able to filter out provider names that include the letters MSI.
I specify the fourth parameter as 1 to perform a case-insensitive filter. Once I find the MSI pro
vider, I might as well return some of the more exciting properties of the provider, such as the
class ID and the hosting model. Keep in mind that although this script is currently only look
ing for the MSI provider, it can easily be altered to look for any other provider on a machine.

FindMSIProvider.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strProv = "MSI"

Set objWMIService = _

GetObject ("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.InstancesOf("__Win32Provider")

For Each objItem In colItems

With objItem

If InStr(1,.name, strProv,1) then

WScript.echo .Name, .clsid _

& vbcrlf & "hostingModel: " & .hostingModel

End If

End with

Next

Quick Check

Q: Is the MSI Installer provider installed by default on computers running Windows
Server 2003?

A: The MSI Installer provider is not installed by default on computers running Windows
Server 2003.

Q: You have a query that uses the Win32_SoftwareElement class to inventory software
applications. It runs fine on computers running Microsoft Windows 2000 and Win
dows XP, but it fails on computers running Windows Server 2003. What must you do to
correct the problem?

A: If you have a script that uses the Win32_SoftwareElement class that works on computers
running Windows 2000 and Windows XP but not on those running Windows Server 2003,
the first thing you must realize is the provider that supplies this class is the WMI Windows
Installer provider. You should check by using Add Or Remove Programs on the computer
running Windows Server 2003 to ensure that the WMI Windows Installer provider is
installed.

Chapter 9: Using Win32 WMI Classes 181
Understanding WMI Service Management
Another grouping of WMI classes is used to assist us with the management of WMI. The main
WMI class in this group is the Win32_WMISetting class. This class can retrieve some real nifty
information about the way WMI is configured on your computer. Many of these properties are
writable, so not only can you query the property, but you can also use the property to change
the behavior of WMI. If you need to verify the default namespace, use the ASPScriptDefault-
Namespace property. But if you need to change the default namespace, you can write a value to
the same property. If you are concerned about the WMI logging level, query the LoggingLevel
property. I illustrate using this class in the DisplayWMISettings.vbs script. This script can be
a great starting place for WMI troubleshooting on a computer. The DisplayWMISettings.vbs
script prints out most of the main properties related to WMI configuration on a computer.

DisplayWMISettings.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "win32_wmiSetting=@"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, _

wmiNS, strUsr, strPWD, strLocl, strAuth, iFlag)

Set objItem = objWMIService.get(wmiQuery)

With objItem

Wscript.echo "ASPScriptDefaultNamespace:" & .ASPScriptDefaultNamespace

Wscript.echo "ASPScriptEnabled:" & .ASPScriptEnabled

Wscript.echo "AutorecoverMofs:" & join(.AutorecoverMofs, vbcrlf)

Wscript.echo "AutoStartWin9X:" & .AutoStartWin9X

Wscript.echo "BackupInterval:" & .BackupInterval

Wscript.echo "BackupLastTime:" & FunTime(.BackupLastTime)

Wscript.echo "BuildVersion:" & .BuildVersion

Wscript.echo "Caption:" & .Caption

Wscript.echo "DatabaseDirectory:" & .DatabaseDirectory

Wscript.echo "DatabaseMaxSize:" & .DatabaseMaxSize

Wscript.echo "Description:" & .Description

Wscript.echo "EnableAnonWin9xConnections:" & .EnableAnonWin9xConnections

Wscript.echo "EnableEvents:" & .EnableEvents

Wscript.echo "EnableStartupHeapPreallocation:" & .EnableStartupHeapPreallocation

Wscript.echo "HighThresholdOnClientObjects:" & .HighThresholdOnClientObjects

Wscript.echo "HighThresholdOnEvents:" & .HighThresholdOnEvents

Wscript.echo "InstallationDirectory:" & .InstallationDirectory

Wscript.echo "LastStartupHeapPreallocation:" & .LastStartupHeapPreallocation

Wscript.echo "LoggingDirectory:" & .LoggingDirectory

Wscript.echo "LoggingLevel:" & .LoggingLevel

Wscript.echo "LowThresholdOnClientObjects:" & .LowThresholdOnClientObjects

Wscript.echo "LowThresholdOnEvents:" & .LowThresholdOnEvents

Wscript.echo "MaxLogFileSize:" & .MaxLogFileSize

Wscript.echo "MaxWaitOnClientObjects:" & .MaxWaitOnClientObjects

182 Part IV: Classes
Wscript.echo "MaxWaitOnEvents:" & .MaxWaitOnEvents

Wscript.echo "MofSelfInstallDirectory:" & .MofSelfInstallDirectory

Wscript.echo "SettingID:" & .SettingID

End with

'### functions below ####

Function FunTime(wmiTime)

If wmiTime <> Null Then

Dim objSWbemDateTime 'holds an swbemDateTime object. Used to translate Time

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value= wmiTime

FunTime = objSWbemDateTime.GetVarDate

End if

End Function

Quick Check

Q: If you want to change the default WMI namespace on your workstation, how can you
use a script to do this without editing the registry?

A: If you want to change the default WMI namespace on your workstation without editing
the registry, you can do so by using the ASPScriptDefaultNamespace property of the
Win32_WMISetting class.

Q: Because the Win32_WMISetting class does not expose any methods, how can you
modify WMI settings?

A: You can modify many WMI settings by using the writable properties exposed by the
Win32_WMISetting class.

Writing to the Properties

As interesting as reporting WMI configuration settings is, the real power comes when you
decide to make changes. The Win32_WMISetting class follows normal WMI conventions in
working with the read/write properties. You do not need to spawn a new instance of the class,
but you will need to use the Put_ method to write the changes back to the WMI database.

It is possible to use the BackupInterval property to configure an automatic backup of the WMI
repository—the problem, though, is that this property is deprecated in Windows XP. This
means that although you can use a script to set the property, it will not work on computers
running Windows XP, but it will work on computers running Windows 2000 and earlier
operating systems. For Windows XP, the capability of doing an automatic backup of the WMI
repository was removed. Interestingly enough, when you set the BackupInterval property on
computers that run Windows XP, it adds the HKLM\Software\Microsoft\WBEM\CIMOM\
Backup Interval Threshold registry key and even records the desired backup interval in min
utes. A query of this property returns whichever value you set. But please keep in mind this
does not work, although it appears to work and no errors are returned. The property is not

Chapter 9: Using Win32 WMI Classes 183
marked as deprecated in the Managed Object Format (MOF) file, but it is, in fact, deprecated
and it does not work. This means you must do a manual backup of the repository. You can
find more information on this in Chapter 14.

The BackUpLastTime property also does not work on computers running Windows XP despite
the fact you do a manual backup of the repository. This property was tied together with the
BackupInterval property, and when that property was deprecated, so was the BackUpLastTime
property. This property will never return any information on computers running Windows
XP; it does, however, work on computers that run Windows 2000 and earlier.

Summary
In this chapter, we looked at two groups of Win32 classes: WMI management classes and
classes provided by the WMI Windows Installer provider. The WMI Windows Installer pro
vider is not installed by default on computers running Windows Server 2003, but it can easily
be added by using Add Or Remove Programs. It is installed by default on earlier operating sys
tems. Once the WMI MSI provider is installed, you gain access to nearly a hundred WMI
classes that give you the capability to write scripts that install, patch, and inventory software
in your Windows environment. You can use WMI to assist in managing WMI. Several classes
fall into this category. The most important is the Win32_WMISetting class, but a few others
warrant further exploration.

Quiz Yourself
Q: What is the main advantage of installing the WMI Windows Installer provider on
a computer that runs Windows Server 2003?

A: The main advantage of installing the WMI Windows Installer provider on a computer
that runs Windows Server 2003 is that it provides access to the software management
classes. In this manner, you gain the opportunity to perform software installation, main
tenance, and inventory.

Q: What is the main WMI management class?

A: The main WMI management class is Win32_WMISetting.

Q: How can you find out whether a WMI provider exists on a remote computer by

using a script?

A: To find out whether a WMI provider exists on a remote computer, you can do an
InstancesOf query and look for instances of the __Win32Provider system class.

184 Part IV: Classes
On Your Own

Lab 19 Working with the Win32_Product Class

In this lab, you will use the Win32_Product class to obtain a list of applications installed on a
computer. You will also use the class to obtain installation directory information about the
products.

1.	 Open the ConnectServerTemplate.vbs file in the Lab 19 directory, and save it as
StudentLab19.vbs.

2.	 For now, all the variables are declared. You simply need to modify the wmiQuery so that
it points to Win32_Product. You are not using the ExecQuery method, so you want only
the ClassName held here. The line will look like the following:

wmiQuery = "win32_Product"

3.	 Instead of using the ExecQuery method, use the InstancesOf method. Modify the set
colItems = objWMIService.ExecQuery(wmiQuery) line to use InstancesOf. The modified line
looks like the following:

Set colItems = objWMIService.instancesOf(wmiQuery)

4.	 Turn on two of the Wscript.Echo commands and have them print out the name and the
version properties.

5.	 Save and run the script. You should see a printout of all the MSI-installed applications
on your computer with their accompanying version information.

6.	 Now you want to obtain some file installation information. Not all of the applications
provide this information. Additionally, doing an evaluation of NULL does not always
work either. Instead, use the Instr function. All file installation directories will contain a
backslash (\), so this is what you look for. If you find the backslash (\),you want to echo
out the InstallLocation property inside a simple For Next loop. The completed code looks
like the following:

If InStr(objItem.installLocation, "\") then

WScript.echo vbtab & objItem.InstallLocation

End if

7. Save and run the script. It should run without errors.

8.	 Now you want to clean up the output just a little bit. Instead of using two lines for the
product name and the version name, move these items to a single line. The modified line
will look like the following:

Wscript.Echo objItem.name & vbtab &objItem.version

9.	 Once you add or modify the two previously existing Echo commands, save and run the
script. It should produce an adequate output.

Chapter 9: Using Win32 WMI Classes 185
Lab 20 Making Changes to WMI Settings

In this lab, you will use the write methods of the Win32_WMISetting class to change the
default WMI namespace. This procedure works with other writable properties of the
Win32_WMISetting class as well. As an added bonus, you will build two custom error han
dlers, examine Microsoft Visual Basic Scripting Edition (VBScript) data types, and, in short,
have a lot of fun.

1.	 Open the ConnectServer.vbs file from the Lab 20 folder, and save it as
StudentLab20.vbs.

2.	 The first thing you need to do is to modify the wmiQuery string so it points to the
Win32_WMISetting class. Because WMI is already running, connect to the running
instance of WMI. To do this, use the @ shorthand notation. The modified wmiQuery
looks like the following:

wmiQuery = "Win32_WMISetting=@"

3.	 Use the Get method to connect to the specific instance of Win32_WMISetting. This looks
like the following:

Set objItem = objWMIService.get(wmiQuery)

4. Delete the entire For Each Next section, including all the Wscript.echo commands.

5.	 To set the default WMI namespace, use the ASPScriptDefaultNamespace property and
assign a value to it. You do so by using the equals sign. Do not “capture” the return code.
This line of code looks like the following:

objItem.ASPScriptDefaultNamespace ="root\wmi"

6.	 Use the Put command to put information into WMI. Because you are changing a specific
value of a read/write property, you will want to write it back to the WMI repository. Use
the Put_ method as shown here:

objItem.put_

7. Save and run the script. You should not see any errors. In fact, you will not see anything.

8.	 To see if the script worked, open the WMI Control Properties console: right-click My
Computer, select Manage, click Services And Applications, click WMI Control to set the
focus, right-click WMI Control, and click Properties. In the Advanced tab, you will see
the default namespace—it should match root\wmi, which you specified in step 5.

9.	 If you see the same WMI namespace you specified earlier, you have it right so far.
Change the WMI namespace back to the default by modifying the ASPScriptDefault-
Namespace = "root\wmi" line to be ASPScriptDefaultNamespace = "root\cimv2". Run the
script and confirm that the namespace, in fact, changed back.

10. Because you are not echoing out a return code, it makes sense to add an error handler.
Use the error object, which is always in scope. Echo out the Number, Description, and

186 Part IV: Classes
Source properties of the err object. (If you check the solution file you will see a different
solution because we are not done with the error handler at this point.) This code looks
like the following:

If Err.Number <> 0 Then

WScript.echo hex(Err.Number) & vbcrlf & Err.Description &_

vbcrlf & Err.Source

End if

11. Run the script. Once again, you should not see any message. Save your script.

12. Use the WMI control tool to verify the changes took effect.

13. Declare a new variable called strNS to hold the desired WMI namespace.

14. In the reference section of the script, under the wmiNS = "\root\cimv2" line, add the line
strNS = "root\wmi".

15. Find the line where you are actually changing the WMI namespace. You have the
namespace hard-coded right now. Change it to use the new strNS variable. The modified
line of code looks like the following:

objItem.ASPScriptDefaultNamespace = strNS

16. Save and run the script.

17. Open the DisplayWMISettings.vbs script from the Lab 20 folder, and run it. Notice at
the top the value of the ASPScriptDefaultNamespace property. It should read root\wmi,
indicating you were successful in changing the default WMI namespace on the com
puter.

18. Add an error handler to indicate whether the operation was successful. Use the Number,
Description, and Source properties of the err object. Use an If Then Else End If decision
matrix. Make the evaluation on the value of Err.Number not being equal to 0. The error
handler looks something like the following at this point:

If Err.Number<> 0 Then

WScript.echo Err.Number & vbtab & Err.Source & vbcrlf & Err.Description _

& "occurred. The change did not occur"

Else

End if

19. Run the script and see what happens. It should still work.

20. To enable the script to enter the error handler, you need to remove the comment mark
from the On Error Resume Next statement at the top of the script. This enables the script
to proceed past any errors that might be generated in script.

21. It works? Sweet! Now add to the error handler. In the Else condition, add code to indi
cate a successful completion of the script. Also, it would be nice to print out the new
namespace, so echo out the value of objItem.ASPScriptDefaultNamespace. The code looks
like the following inside the Else End If:

Chapter 9: Using Win32 WMI Classes 187
WScript.echo "The default wmi Namespace is now " & vbcrlf & _

objItem.ASPScriptDefaultNamespace

22. Save and run the script.

23. There is one last little thing you need to do to complete the error handler: clear the error
if it should occur. After the line that prints out that an error occurred and right before
the Else condition, use the Clear method of the err object. It will simply look like
Err.Clear. The code looks like the following:

If Err.Number<> 0 Then

WScript.echo Err.Number & vbtab & Err.Source & vbcrlf & Err.Description _

& " occurred. The change did not occur"

Err.clear

Else

WScript.echo "The default wmi Namespace is now " & vbcrlf & _

objItem.ASPScriptDefaultNamespace

End If

24. Now that you have an error handler, test it to see how effective it is. Assign a numeric
value for strNS in the reference section of the script, something like strNS = 5.

25. Run the script. Do you get an error? No. The problem is that there is nothing that detects
an invalid entry for the default WMI namespace. To this end, add a subroutine that both
detects an invalid entry and ensures an entry that specifies the root\ type of namespace.

26. Use the vbscript VarType function to detect the data type of the value supplied for strNS.
If it is an integer, you will raise error 1031. If it is a string but does not have the word root
with a backslash in it, you will raise error 1032. Both of these are standard VBScript
errors. The code to do this looks like the following:

Sub subCheckNS

If VarType(StrNS) = vbInteger Then Err.Raise(1031)

If VarType(StrNS) = vbString Then

If InStr(1,StrNS,"root\",1) = 0 Then Err.Raise(1032)

End If

End Sub

27. To get an idea of the basic VBScript errors, you can look at the RaiseAbunchOfErrors.vbs
script in the Lab 20 folder. This script simply walks through a whole lot of numbers,
uses the Err.Raise method to raise the errors, and the Err.Clear method to clear the
errors. In addition, it prints out the error numbers and descriptions. It does this while
filtering out the word unknown (as in unknown error).

28. Back in your StudentLab20.vbs script, move the original error handler into a subroutine.
Call it SubError, and move it to the bottom of the script. It looks like the following when
you’re done:

Sub subError

If Err.Number<> 0 Then

WScript.echo Err.Number & vbtab & Err.Source & vbcrlf & Err.Description _

& " occurred. The change did not occur"

Err.clear

188 Part IV: Classes
Else

WScript.echo "The default wmi Namespace is now " & vbcrlf & _

objItem.ASPScriptDefaultNamespace

End If

End sub

29. Finally, you will need to call SubError right after you use the Put_ method to write to the
database. This is where the error would most likely occur.

30. Now try to add the number 6 as a value for strNS and run the script. You should get the
Invalid Number error 1031.

31. Try cimv2 with no root\ in front of it for the value of strNS and run the script. You should
get the Invalid Character error 1032. This means a string was supplied, but it did not
contain the word root\.

32. Try the value "root\cimv2" for strNS and run the script. It should work.

Chapter 10

Using System Hardware Classes

In the last chapter, we examined the five categories of Win32 Windows Management Instru
mentation (WMI) classes. We saw how those classes can assist us in working with both WMI
and with the Microsoft Windows operating system.

The system hardware classes are organized into nine different subcategories of classes that,
when taken together, totally describe a computer system. Using these classes, you can find out
all the information needed to manage and control a Microsoft Windows Server 2003–based
system. In addition, numerous methods enable you to perform useful tasks on your server.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of performing WMI queries

■ The use of the WMI moniker

■ The use of the ConnectServer method

■ The basics of event-driven queries

■ The basics of conducting privileged operations

After you complete this chapter, you will be familiar with the following concepts:

■ The use of the system hardware classes

■ The organization of the WMI hardware classes

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter10 folder.

Using Cooling Device Classes
The cooling device classes are used to represent items related to cooling on servers and work-
stations. Four classes are found in this category:
189

190 Part IV: Classes
■ Win32_Fan

■ Win32_HeatPipe

■ Win32_TemperatureProbe

■ Win32_Refrigeration

Of the four classes, the two that are most interesting are the Win32_Fan class and the
Win32_TemperatureProbe class.

Working with Win32_Fan

The Win32_Fan class is derived from the cim_fan class in the root\cimv2 namespace. The
Win32_Fan class inherits three methods from cim_fan—however, none of these methods are
implemented by WMI. The cim_fan class is an abstract class, which means it is used as the
basis for the development of other WMI classes. You can, of course, write a script that uses
cim_fan, and it will work, but there is really no reason to do this because both cim_fan and
Win32_Fan have the same number of properties and methods. The Win32_Fan class might not
return any information on your system because we have to retrieve information from the hard-
ware. If the hardware vendor has not provided information to the class, the script returns an
error.

The interesting thing about the Win32_Fan class (and cim_fan, for that matter) is the three
methods that are defined. The methods are not implemented, which means the schema
defines the methods but WMI does not implement them. The strange thing about this class is
the way the key value is expressed. The key property is the DeviceID, but rather than being a
normal device ID 0 or something similar, it is root\cimv2 0. This was discovered using the Get-
ClassKey.vbs script that is located in the UtilityScripts subdirectory on the accompanying CD.
If the GetWin32_Fan.vbs script fails, it is possible the class is not populated on your system.
If the GetClassKey.vbs script does not return a key value, you can use Wbemtest.exe to see if
there is an instance of the class on your system.

GetWin32_Fan.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_Fan.deviceID='root\cimv2 0'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

wscript.echo "ActiveCooling: " & objItem.ActiveCooling

wscript.echo "Availability: " & objItem.Availability

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

wscript.echo "DesiredSpeed: " & objItem.DesiredSpeed

wscript.echo "DeviceID: " & objItem.DeviceID

Chapter 10: Using System Hardware Classes 191
wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "Name: " & objItem.Name

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "VariableSpeed: " & objItem.VariableSpeed

Probing the Win32_TemperatureProbe Class

The Win32_TemperatureProbe class is derived from the CIM_TemperatureSensor class. In fact,
just like Win32_Fan, it has no specific properties that are not derived. The two methods that
are defined are not implemented. Most of the information that the Win32_TemperatureProbe
class displays is reported to it from the computer’s system management BIOS (SMBIOS). If
the computer’s SMBIOS does not report to WMI, you are not provided the information and
the script will error out. If you are interested in the system BIOS on your computer in partic
ular, you might find useful the Win32_SMBiosMemory class, the Win32_BIOS class, and the
Win32_SystemBios class, which are discussed later in the “Motherboard, Controller, and Port
Classes” section.

The GetWin32_TemperatureProbe.vbs script uses the Get method to make a connection to the
key property (DeviceID), which has a value of 'root\cimv2 0' just like the Win32_ Fan class did. All
of the temperature-related properties (such as tolerance) are reported in tenths of degrees centi
grade. The CurrentReading property does not report because of the problems involved in retriev
ing the real-time value from the SMBIOS tables. If the GetWin32_TemperatureProbe.vbs script
fails, you can use Wbemtest.exe to open the Win32_TemperatureProbe class to see if there are any
instances of the class represented on your system. If there are not, your hardware maker does
not provide the information to WMI.

GetWin32_TemperatureProbe.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_TemperatureProbe.DeviceID='root\cimv2 0'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

With objItem

wscript.echo "Accuracy: " & .Accuracy

wscript.echo "Availability: " & .Availability

wscript.echo "Caption: " & .Caption

wscript.echo "ConfigManagerErrorCode: " & .ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & .ConfigManagerUserConfig

wscript.echo "CreationClassName: " & .CreationClassName

wscript.echo "CurrentReading: " & .CurrentReading

wscript.echo "Description: " & .Description

192 Part IV: Classes
wscript.echo "DeviceID: " & .DeviceID

wscript.echo "ErrorCleared: " & .ErrorCleared

wscript.echo "ErrorDescription: " & .ErrorDescription

wscript.echo "InstallDate: " & .InstallDate

wscript.echo "IsLinear: " & .IsLinear

wscript.echo "LastErrorCode: " & .LastErrorCode

wscript.echo "LowerThresholdCritical: " & .LowerThresholdCritical

wscript.echo "LowerThresholdFatal: " & .LowerThresholdFatal

wscript.echo "LowerThresholdNonCritical: " & .LowerThresholdNonCritical

wscript.echo "MaxReadable: " & .MaxReadable

wscript.echo "MinReadable: " & .MinReadable

wscript.echo "Name: " & .Name

wscript.echo "NominalReading: " & .NominalReading

wscript.echo "NormalMax: " & .NormalMax

wscript.echo "NormalMin: " & .NormalMin

wscript.echo "PNPDeviceID: " & .PNPDeviceID

wscript.echo "PowerManagementCapabilities: " &.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & .PowerManagementSupported

wscript.echo "Resolution: " & .Resolution

wscript.echo "Status: " & .Status

wscript.echo "StatusInfo: " & .StatusInfo

wscript.echo "SystemCreationClassName: " & .SystemCreationClassName

wscript.echo "SystemName: " & .SystemName

wscript.echo "Tolerance: " & .Tolerance

wscript.echo "UpperThresholdCritical: " & .UpperThresholdCritical

wscript.echo "UpperThresholdFatal: " & .UpperThresholdFatal

wscript.echo "UpperThresholdNonCritical: " & .UpperThresholdNonCritical

End with

Examining the Input Device Classes
Only two classes are used to represent input devices:

■ Win32_Keyboard

■ Win32_PointingDevice

Working with the Win32_Keyboard Class

Win32_Keyboard is derived from CIM_Keyboard. Both classes have 23 properties and two
methods. The two methods (Reset and SetPowerState) are not implemented. If you want to use
the Get method to connect to the Win32_Keyboard class, you need to use the DeviceID prop
erty. The problem with using the Get method here is that the DeviceID property is not the
most intuitive property around, and you will end up with a value something like the following:
ACPI\PNP0303\4&1D6F7EAE&0. You can easily obtain this value by using the GetClass-
Key.vbs script from the UtilityScripts folder. You could also find this value by simply running
the following Win32_Keyboard.vbs script. You need to decide if it is worth the trouble of
using ExecQuery to return “all instances of keyboards” on your computer and then using For
Next to walk through the results or of changing the script to look something like the

Chapter 10: Using System Hardware Classes 193
GetWin32_Keyboard.vbs script (in the Chapter10 folder) and potentially having to edit the
DeviceID property.

Win32_Keyboard.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_Keyboard"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Availability: " & objItem.Availability

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "IsLocked: " & objItem.IsLocked

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "Layout: " & objItem.Layout

wscript.echo "Name: " & objItem.Name

wscript.echo "NumberOfFunctionKeys: " & objItem.NumberOfFunctionKeys

wscript.echo "Password: " & objItem.Password

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo " "

next

Working with the Win32_PointingDevice Class

Generally speaking, when you use the Win32_PointingDevice class, you are concerned with
mouse devices. Win32_PointingDevice is a good example of a situation in which Microsoft
extended the class to make it more applicable to a Windows environment. The
Win32_PointingDevice.vbs script tells you everything there is to know about a mouse on a
computer running the Windows operating system. This script provides some useful inven
tory-type data.

Win32_PointingDevice.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_PointingDevice"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

194 Part IV: Classes
For Each objItem in colItems

wscript.echo "Availability: " & objItem.Availability

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "DeviceInterface: " & objItem.DeviceInterface

wscript.echo "DoubleSpeedThreshold: " & objItem.DoubleSpeedThreshold

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "Handedness: " & objItem.Handedness

wscript.echo "HardwareType: " & objItem.HardwareType

wscript.echo "InfFileName: " & objItem.InfFileName

wscript.echo "InfSection: " & objItem.InfSection

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "IsLocked: " & objItem.IsLocked

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "Name: " & objItem.Name

wscript.echo "NumberOfButtons: " & objItem.NumberOfButtons

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PointingType: " & objItem.PointingType

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "QuadSpeedThreshold: " & objItem.QuadSpeedThreshold

wscript.echo "Resolution: " & objItem.Resolution

wscript.echo "SampleRate: " & objItem.SampleRate

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "Synch: " & objItem.Synch

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo " "

next

Mass Storage Classes
Six classes are used to represent mass storage classes. By using these classes, you have access
to properties that can describe nearly every possible configuration available to a computer
running the Windows operating system. No methods are available in this grouping of classes,
but there are a few writable properties. The main use of these classes is for reporting purposes.
Following are the mass storage classes:

■ Win32_AutoChkSetting

■ Win32_CDROMDrive

■ Win32_DiskDrive

■ Win32_FloppyDrive

Chapter 10: Using System Hardware Classes 195
■ Win32_PhysicalMedia

■ Win32_TapeDrive

Checking the Autocheck Settings

The Win32_AutoChkSetting class displays information related to a check disk operation that is
scheduled as a result of a potential problem on the hard disk drive. This class does not tell you
if you need to do a disk check; rather, it tells you what will happen if an automatically sched
uled disk check is scheduled. The most interesting property of this class is the UserInputDelay
property. This property determines how long before the Autocheck will run, unless you press
the space bar. This property is writable, so if the default value is too short or too long, you can
change it by writing to the property. The technique for making this change is illustrated in the
SetAutoCheckSetting.vbs script. To set the property you make the connection into WMI, con
nect to the class, and assign a value to the property. The Win32_AutoChkSetting.vbs script in
the Chapter10 folder on the accompanying CD reports all the properties.

SetAutoCheckSetting.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "select * from win32_autoChkSetting"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.execQuery(wmiQuery)

For Each objItem in colItems

objItem.UserInputDelay = 15

objItem.Put_

Next

Examining the Win32_CDROMDrive Class

The Win32_CDROMDrive class describes the removable storage device of the same name. This
class can provide numerous properties, as shown in the Win32_CDROMDrive.vbs script in
the Chapter10 folder on the accompanying CD. This class does not do some things very well.
For instance, it will not tell you if a drive is writable. A property called Capabilities that is
stored as an array indicates what the CD-ROM drive is capable of. Capability 4 means it sup-
ports writing; however, I have never seen a CD-ROM drive report back that it supports writing.
Usually something silly such as “supports removable media” (capability 7) comes back, along
with “random access” (capability 3). The Win32_CDROMDrive class does not have a property
that tells you if the device supports DVD either.

You are not stuck with only the information provided directly by the class. You can modify the
output to suit your needs. The CDDriveInfo.vbs script includes a technique for doing this. You
rely upon the fact that most of the time manufacturers display drive information in the cap
tion property of the Win32_CDROMDrive class. If you are looking for DVD drives, you use the
Instr command to pull out the drive that is displaying that information.

196 Part IV: Classes
CDDriveInfo.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_CDROMDrive"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Caption: " & objItem.Caption

if instr(1,objItem.caption,"DVD",1) <> 0 then

WScript.echo "this drive is a DVD player"

End If

wscript.echo "Drive: " & objItem.Drive

wscript.echo "SystemName: " & objItem.SystemName

Next

Examining the Disk Drive

There is absolutely nothing exciting about the Win32_DiskDrive class. It reports 49 properties,
none of which are writable, and the only two methods (inherited) are not implemented. That
said, there is nothing wrong with this class. If you need to inventory your hard disk drives, this
is the class for you. If you need to find out how many sectors, heads, or types of interfaces your
computer is using for storage, fire up the script editor and write your query. You can, of
course, use the Win32_DiskDrive.vbs script. It reports all the properties of every hard disk
drive on the system. You can find it in the Chapter10 folder on the accompanying CD.

Examining the Floppy Drive

Of course, you have to have a floppy drive on your computer to use this class. The
Win32_FloppyDrive class provides detailed information about a floppy drive. It can give you the
size and device ID, as well as the make and, in some instances, the model of the floppy drive.
No methods or writable properties are available for this class. The Win32_FloppyDrive.vbs
script in the Chapter10 folder on the accompanying CD provides an example of using the
Win32_FloppyDrive class.

Working with Tapes

The Win32_PhysicalMedia class provides lots of good information about the tape that goes into
your tape drive. It also reports on other removable media. Although the Capabilities property
theoretically is able to report on removable media from a CD-ROM drive, you are better off using
the Win32_CDROMDrive class to provide this information. The Win32_PhysicalMedia.vbs
script in the Chapter10 folder on the accompanying CD provides an example of using the
Win32_PhysicalMedia class.

Chapter 10: Using System Hardware Classes 197
Using the Win32_TapeDrive Class

The Win32_TapeDrive class is another reporting class. It has 40 properties and two inherited
methods, which are not implemented. The 40 properties describe nearly every conceivable
piece of information about a tape drive: Does it support hardware compression, and if so,
what method does it use? How much space is devoted to the end-of-tape warning? Does it
need cleaning? Inquiring minds want to know these things, and this information is very use
ful if you need to do a backup drive inventory. The Win32_TapeDrive.vbs script uses this
class. The Capabilities and the CapabilityDescriptions properties work hand in hand with one
another. The CapabilityDescriptions property translates the values retrieved from the Capabili
ties property. Several WMI classes do this, although most do not. When you find one, it is a
real treat.

Win32_TapeDrive.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_TapeDrive"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Availability: " & objItem.Availability

wscript.echo "Capabilities: " & objItem.Capabilities

wscript.echo "CapabilityDescriptions: " & objItem.CapabilityDescriptions

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Compression: " & objItem.Compression

wscript.echo "CompressionMethod: " & objItem.CompressionMethod

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "DefaultBlockSize: " & objItem.DefaultBlockSize

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "ECC: " & objItem.ECC

wscript.echo "EOTWarningZoneSize: " & objItem.EOTWarningZoneSize

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "ErrorMethodology: " & objItem.ErrorMethodology

wscript.echo "FeaturesHigh: " & objItem.FeaturesHigh

wscript.echo "FeaturesLow: " & objItem.FeaturesLow

wscript.echo "Id: " & objItem.Id

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "MaxBlockSize: " & objItem.MaxBlockSize

wscript.echo "MaxMediaSize: " & objItem.MaxMediaSize

wscript.echo "MaxPartitionCount: " & objItem.MaxPartitionCount

wscript.echo "MediaType: " & objItem.MediaType

wscript.echo "MinBlockSize: " & objItem.MinBlockSize

wscript.echo "Name: " & objItem.Name

wscript.echo "NeedsCleaning: " & objItem.NeedsCleaning

wscript.echo "NumberOfMediaSupported: " & objItem.NumberOfMediaSupported

198 Part IV: Classes
wscript.echo "Padding: " & objItem.Padding

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "ReportSetMarks: " & objItem.ReportSetMarks

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo " "

next

Motherboard, Controller, and Port Classes
There are 50 classes used to represent the motherboard, controller, and port classes. These
classes can tell you information about processors, the BIOS, memory, and can even indicate
whether your laptop supports Bluetooth, for example. There are too many classes to list here,
but they are included in the “Motherboard, Controller, and Port Classes” section of Appendix D.
No real methods are exposed by these classes. However, some cool classes are in this group.
We look at a couple of them in this section, beginning with the Win32_PortConnector class.

Reporting with Port Classes

The Port classes can provide vital information about the input/output capabilities of your
machine. The Win32_PortConnector at first glance seems rather trite. It was not until I
started looking at the descriptions that I began to get rather excited. In particular, the Exter
nalReferenceDesignator property can report useful information such as whether the laptop
has a wireless card, Bluetooth, or infrared capabilities. The PortConnector.vbs script uses
this class to query a subset of the properties available from the Win32_PortConnector class
(the Win32_PortConnector.vbs script in the Chapter10 folder on the accompanying CD
prints out all the properties). The ConnectorType property is an array, so you use the Join func
tion to convert it into a string so you can easily print it out. The ConnectorType property is
stored as an array because it first reports the configuration type, and the second element of
the array indicates whether the port is male or female. On my laptop, the parallel port reports
the following information:

ConnectorType:23,3

ExternalReferenceDesignator:PARALLEL PORT

PortType:3

Tag:Port Connector 0

A ConnectorType of 23 means that it is a parallel port. The second element, 3, means it is a
female type of connector. The PortType of 3 shown in the preceding report means it is a parallel
Extended Capabilities Port (ECP), and the tag of Port Connector 0 is a unique identifier of a
port connection on the computer system. The next port is Port Connector 1, and then Port Con
nector 2, with each port on the system receiving its own unique identifier. The Platform soft-

Chapter 10: Using System Hardware Classes 199
ware development kit (SDK) includes tables that enable you to look up the meanings of these
various properties.

PortConnector.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_PortConnector"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, _

wmiNS, strUsr, strPWD, strLocl, strAuth, iFLag)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.echo "ConnectorType:" & join(objItem.ConnectorType, ",")

Wscript.echo "ExternalReferenceDesignator:" &_ objItem.ExternalReferenceDesignator

Wscript.echo "PortType:" & objItem.PortType

Wscript.echo "Tag:" & objItem.Tag

WScript.echo ""

Next

Networking Device Classes
Three classes are used to represent networking devices. These are extremely powerful and
flexible classes. By using these classes, you can describe the network adapter, including its
protocol settings, security configuration, and hardware descriptions. The logic of these classes
is as follows: the adapter class describes the network adapter itself—the physical piece of hard-
ware. The network adapter configuration class is used to describe and to set the protocol con-
figuration on a specific network adapter. To this end, the adapter configuration class contains
41 methods, providing the intrepid network administrator a Swiss army knife for dealing with
network configuration issues. The adapter setting class is used to match a network adapter
with its configuration settings—it is an association class. An example of using this class is the
Win32_NetworkAdapterSetting.vbs script in the cimv2 folder on the accompanying CD. The
networking device classes are as follows:

■ Win32_NetworkAdapter

■ Win32_NetworkAdapterConfiguration

■ Win32_NetworkAdapterSetting

Working with the Network Adapter Class

The Win32_NetworkAdapter class is used to describe the network adapter you might have
installed on your computer. It contains 36 properties and two methods (inherited), which are

200 Part IV: Classes
not implemented. Basically, you use this class to tell you everything you need to know about
the network adapter. Win32_NetworkAdapter is related to many other classes on the computer,
as shown in Figure 10-1. Some of these classes are in the networking category; others are not.

Figure 10-1 Relationships of the Win32_NetworkAdapter class

The Win32_NetworkAdapter class does not allow you to make any changes to the network
adapter—for that you use the Win32_NetworkAdapterConfiguration class. In the
Win32_NetworkAdapter.vbs script, I use a variable Where clause to filter out information on
network adapters that contain the name Intel. I do this to remove information about remote
access server (RAS) adapters, infrared adapters, parallel cable connections, virtual private net-
work (VPN) adapters, and even virtual machine adapters. On my laptop, I have two real net-
work cards: a wired card and a wireless card. Both happen to be made by Intel, so that is the
name that shows up in the caption. If your network card is made by some other company, you
need to substitute that name in the strWhere assignment. If you want to see all the network
adapters regardless of manufacturer, modify the wmiQuery line so it looks like the following:

wmiQuery = "Select * from Win32_NetworkAdapter"

Win32_NetworkAdapter.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strWhere = "caption like '%intel%'"

wmiQuery = "Select * from Win32_NetworkAdapter where " & strWhere

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems:With objItem

wscript.echo funLine("Caption: " & .Caption)

wscript.echo "AdapterType: " & .AdapterType

Chapter 10: Using System Hardware Classes 201
wscript.echo "AdapterTypeId: " & .AdapterTypeId

wscript.echo "AutoSense: " & .AutoSense

wscript.echo "Availability: " & .Availability

wscript.echo "ConfigManagerErrorCode: " & .ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & .ConfigManagerUserConfig

wscript.echo "CreationClassName: " & .CreationClassName

wscript.echo "Description: " & .Description

wscript.echo "DeviceID: " & .DeviceID

wscript.echo "ErrorCleared: " & .ErrorCleared

wscript.echo "ErrorDescription: " & .ErrorDescription

wscript.echo "Index: " & .Index

wscript.echo "InstallDate: " & .InstallDate

wscript.echo "Installed: " & .Installed

wscript.echo "LastErrorCode: " & .LastErrorCode

wscript.echo "MACAddress: " & .MACAddress

wscript.echo "Manufacturer: " & .Manufacturer

wscript.echo "MaxNumberControlled: " & .MaxNumberControlled

wscript.echo "MaxSpeed: " & .MaxSpeed

wscript.echo "Name: " & .Name

wscript.echo "NetConnectionID: " & .NetConnectionID

wscript.echo "NetConnectionStatus: " & .NetConnectionStatus

wscript.echo "NetworkAddresses: " & .NetworkAddresses

wscript.echo "PermanentAddress: " & .PermanentAddress

wscript.echo "PNPDeviceID: " & .PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & .PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & .PowerManagementSupported

wscript.echo "ProductName: " & .ProductName

wscript.echo "ServiceName: " & .ServiceName

wscript.echo "Speed: " & .Speed

wscript.echo "Status: " & .Status

wscript.echo "StatusInfo: " & .StatusInfo

wscript.echo "SystemCreationClassName: " & .SystemCreationClassName

wscript.echo "SystemName: " & .SystemName

wscript.echo "TimeOfLastReset: " & .TimeOfLastReset & vbcrlf

end with:Next

'### functions below ###

Function funLine(lineOfText)

Dim numEQs, separator, i

numEQs = Len(lineOfText)

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = lineOfText & vbcrlf & separator

End function

Using the Adapter Configuration Class

The Win32_NetworkAdapterConfiguration class is one of the largest WMI classes in existence. It
contains 60 properties and 41 methods. Fortunately, the methods are implemented in a
straightforward manner, so once you know how to set two or three of them, you know how to
work with all 41 methods. The frustrating thing for beginning scripters is that many of the
properties of the Win32_NetworkAdapterConfiguration class are stored as arrays. This means

202 Part IV: Classes
you have to deal with them using standard array techniques: use the Join function, use For
Each Next, or print out a specific element. I prefer to use the Join function because it is quick
and easy. But it brings up a special issue: you will get an error if you try to join a property that
is NULL. The solution is illustrated in the Win32_NetworkAdapterConfiguration.vbs script—
use the isNull function that is also built into Microsoft Visual Basic Scripting Edition
(VBScript). The following code illustrates using this procedure:

If not isNull(.DefaultIPGateway) then

wscript.echo "DefaultIPGateway: " & join(.DefaultIPGateway, ",")

End if

This effectively traps a type mismatch error that occurs when you try to use Join with a null
property. The properties are NULL if the adapter is not in use. On my laptop, I am currently
using the wired network connection. It reports all the normal Transmission Control Protocol/
Internet Protocol (TCP/IP) configuration settings. The wireless adapter is not in use and
reports very little—most of the properties are NULL.

Win32_NetworkAdapterConfiguration.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strWhere = "caption like '%intel%'" 'the name of your enet or wireless card

wmiQuery = "Select * from Win32_NetworkAdapterConfiguration where " &_ strWhere

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems:With objItem

wscript.echo funLine("Caption: " & .Caption)

wscript.echo "ArpAlwaysSourceRoute: " & .ArpAlwaysSourceRoute

wscript.echo "ArpUseEtherSNAP: " & .ArpUseEtherSNAP

wscript.echo "DatabasePath: " & .DatabasePath

wscript.echo "DeadGWDetectEnabled: " & .DeadGWDetectEnabled

If not isNull(.DefaultIPGateway) then

wscript.echo "DefaultIPGateway: " & join(.DefaultIPGateway, ",")

End if

wscript.echo "DefaultTOS: " & .DefaultTOS

wscript.echo "DefaultTTL: " & .DefaultTTL

wscript.echo "Description: " & .Description

wscript.echo "DHCPEnabled: " & .DHCPEnabled

wscript.echo "DHCPLeaseExpires: " & .DHCPLeaseExpires

wscript.echo "DHCPLeaseObtained: " & .DHCPLeaseObtained

wscript.echo "DHCPServer: " & .DHCPServer

wscript.echo "DNSDomain: " & .DNSDomain

wscript.echo "DNSDomainSuffixSearchOrder: " & .DNSDomainSuffixSearchOrder

wscript.echo "DNSEnabledForWINSResolution: " &_ .DNSEnabledForWINSResolution

wscript.echo "DNSHostName: " & .DNSHostName

If Not IsNull(.DNSServerSearchOrder) then

wscript.echo "DNSServerSearchOrder: " & join(.DNSServerSearchOrder, ",")

End if

wscript.echo "DomainDNSRegistrationEnabled: " & .DomainDNSRegistrationEnabled

wscript.echo "ForwardBufferMemory: " & .ForwardBufferMemory

wscript.echo "FullDNSRegistrationEnabled: " & .FullDNSRegistrationEnabled

If Not IsNull(.GatewayCostMetric) then

wscript.echo "GatewayCostMetric: " & join(.GatewayCostMetric, ",")

Chapter 10: Using System Hardware Classes 203
End if

wscript.echo "IGMPLevel: " & .IGMPLevel

wscript.echo "Index: " & .Index

If Not IsNull(.IPAddress) then

wscript.echo "IPAddress: " & join(.IPAddress, ",")

End if

wscript.echo "IPConnectionMetric: " & .IPConnectionMetric

wscript.echo "IPEnabled: " & .IPEnabled

wscript.echo "IPFilterSecurityEnabled: " & .IPFilterSecurityEnabled

wscript.echo "IPPortSecurityEnabled: " & .IPPortSecurityEnabled

If Not IsNull(.IPSecPermitIPProtocols) then

wscript.echo "IPSecPermitIPProtocols: " & _

join(.IPSecPermitIPProtocols, ",")

End If

If Not IsNull(.IPSecPermitTCPPorts) then

wscript.echo "IPSecPermitTCPPorts: " & join(.IPSecPermitTCPPorts, ",")

End If

If Not IsNull(.IPSecPermitUDPPorts) then

wscript.echo "IPSecPermitUDPPorts: " & join(.IPSecPermitUDPPorts, ",")

End If

If Not IsNull(.IPSubnet) then

wscript.echo "IPSubnet: " & join(.IPSubnet, ",")

End if

wscript.echo "IPUseZeroBroadcast: " & .IPUseZeroBroadcast

wscript.echo "IPXAddress: " & .IPXAddress

wscript.echo "IPXEnabled: " & .IPXEnabled

wscript.echo "IPXFrameType: " & .IPXFrameType

wscript.echo "IPXMediaType: " & .IPXMediaType

wscript.echo "IPXNetworkNumber: " & .IPXNetworkNumber

wscript.echo "IPXVirtualNetNumber: " & .IPXVirtualNetNumber

wscript.echo "KeepAliveInterval: " & .KeepAliveInterval

wscript.echo "KeepAliveTime: " & .KeepAliveTime

wscript.echo "MACAddress: " & .MACAddress

wscript.echo "MTU: " & .MTU

wscript.echo "NumForwardPackets: " & .NumForwardPackets

wscript.echo "PMTUBHDetectEnabled: " & .PMTUBHDetectEnabled

wscript.echo "PMTUDiscoveryEnabled: " & .PMTUDiscoveryEnabled

wscript.echo "ServiceName: " & .ServiceName

wscript.echo "SettingID: " & .SettingID

wscript.echo "TcpipNetbiosOptions: " & .TcpipNetbiosOptions

wscript.echo "TcpMaxConnectRetransmissions: " & _ .TcpMaxConnectRetransmissions

wscript.echo "TcpMaxDataRetransmissions: " & .TcpMaxDataRetransmissions

wscript.echo "TcpNumConnections: " & .TcpNumConnections

wscript.echo "TcpUseRFC1122UrgentPointer: " & .TcpUseRFC1122UrgentPointer

wscript.echo "TcpWindowSize: " & .TcpWindowSize

wscript.echo "WINSEnableLMHostsLookup: " & .WINSEnableLMHostsLookup

wscript.echo "WINSHostLookupFile: " & .WINSHostLookupFile

wscript.echo "WINSPrimaryServer: " & .WINSPrimaryServer

wscript.echo "WINSScopeID: " & .WINSScopeID

wscript.echo "WINSSecondaryServer: " & .WINSSecondaryServer & vbcrlf

end with:Next

'### functions below####

Function funLine(lineOfText)

Dim numEQs, separator, i

204 Part IV: Classes
numEQs = Len(lineOfText)

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = lineOfText & vbcrlf & separator

End function

Power Classes
Seven WMI classes are used to describe items related to power on a system that runs the Win
dows operating system. The most interesting are the ones related to laptop batteries. By using
these classes, you can retrieve information about the status of portable batteries, how much
run time is left on them, and the chemistry used in those batteries. We examine two of the bat
tery classes in this section because they are the most useful from a network administrator per
spective. Scripts related to the remaining classes are on the accompanying CD in the cimv2
folder. Additional information on these classes can be obtained by referring to the Platform
SDK. The power classes are as follows:

■ Win32_AssociatedBattery

■ Win32_Battery

■ Win32_CurrentProbe

■ Win32_PortableBattery

■ Win32_PowerManagementEvent

■ Win32_UniterruptiblePowerSupply

■ Win32_VoltageProbe

Batteries Are Included

If the target of your script is a portable computer, you might be able to retrieve some really
technical information about the battery. The reason I say you might be able to retrieve this
information is because, of the last three laptops I have had, only one correctly reported this
information.

In the Win32_Battery.vbs script, I retrieve some rather interesting information about the bat
tery. If the battery is fully charged, the BatteryStatus property reports 3. Most other times it
reports 2, which means the status is unknown. The property DesignVoltage reports in milli
volts, so in the Win32_Battery.vbs script, I divide the number by 1000 to report in volts. Esti
mated run time reports in minutes, so I divide the number by 60 to report in hours. If the
laptop is using electricity, this property reports a very large number and is essentially mean
ingless. If the laptop is using battery power, this value is constantly changing based upon cur-
rent running conditions of the machine, becoming more accurate the closer you are to
running out of power. Two properties in this class are deprecated: BatteryRechargeTime and

Chapter 10: Using System Hardware Classes 205
ExpectedBatteryLife—I left these properties out of the Win32_Battery.vbs script because they
do not report meaningful information.

Win32_Battery.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_Battery"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems:With objItem

wscript.echo "Availability: " & .Availability

wscript.echo "BatteryStatus: " & .BatteryStatus

wscript.echo "Caption: " & .Caption

wscript.echo "Chemistry: " & .Chemistry

wscript.echo "ConfigManagerErrorCode: " & .ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & .ConfigManagerUserConfig

wscript.echo "CreationClassName: " & .CreationClassName

wscript.echo "Description: " & .Description

wscript.echo "DesignCapacity: " & .DesignCapacity

wscript.echo "DesignVoltage: " & .DesignVoltage/1000

wscript.echo "DeviceID: " & .DeviceID

wscript.echo "ErrorCleared: " & .ErrorCleared

wscript.echo "ErrorDescription: " & .ErrorDescription

wscript.echo "EstimatedChargeRemaining: " & .EstimatedChargeRemaining

wscript.echo "EstimatedRunTime: " & .EstimatedRunTime/60

wscript.echo "ExpectedLife: " & .ExpectedLife

wscript.echo "FullChargeCapacity: " & .FullChargeCapacity

wscript.echo "InstallDate: " & .InstallDate

wscript.echo "LastErrorCode: " & .LastErrorCode

wscript.echo "MaxRechargeTime: " & .MaxRechargeTime

wscript.echo "Name: " & .Name

wscript.echo "PNPDeviceID: " & .PNPDeviceID

If not IsNull(.PowerManagementCapabilities)then

wscript.echo "PowerManagementCapabilities: " & Join(.PowerManagementCapabilities)

End if

wscript.echo "PowerManagementSupported: " & .PowerManagementSupported

wscript.echo "SmartBatteryVersion: " & .SmartBatteryVersion

wscript.echo "Status: " & .Status

wscript.echo "StatusInfo: " & .StatusInfo

wscript.echo "SystemCreationClassName: " & .SystemCreationClassName

wscript.echo "SystemName: " & .SystemName

wscript.echo "TimeOnBattery: " & .TimeOnBattery

wscript.echo "TimeToFullCharge: " & .TimeToFullCharge & vbcrlf

end with:next

Using Portable Batteries

The Win32_PortableBattery class has a great deal of overlap with the Win32_Battery class. The
difference is the portable battery class is specifically designed to work with portable computers,
whereas the Win32_Battery class is not. One inconvenience is that you will probably need to use
both classes to retrieve meaningful information about your portable computer. Generally, the
maker of the laptop publishes information in one or the other class, but not in both. However,

206 Part IV: Classes
you can often pick up information from the other class. In the Win32_PortableBattery.vbs
script, Chemistry reports a number 6 on my laptop. The Platform SDK tells me that 6 indicates
a lithium-ion battery.

Win32_PortableBattery.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_PortableBattery"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Availability: " & objItem.Availability

wscript.echo "BatteryStatus: " & objItem.BatteryStatus

wscript.echo "CapacityMultiplier: " & objItem.CapacityMultiplier

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Chemistry: " & objItem.Chemistry

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

wscript.echo "DesignCapacity: " & objItem.DesignCapacity

wscript.echo "DesignVoltage: " & objItem.DesignVoltage

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "EstimatedChargeRemaining: " & objItem.EstimatedChargeRemaining

wscript.echo "EstimatedRunTime: " & objItem.EstimatedRunTime

wscript.echo "ExpectedLife: " & objItem.ExpectedLife

wscript.echo "FullChargeCapacity: " & objItem.FullChargeCapacity

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "Location: " & objItem.Location

wscript.echo "ManufactureDate: " & objItem.ManufactureDate

wscript.echo "Manufacturer: " & objItem.Manufacturer

wscript.echo "MaxBatteryError: " & objItem.MaxBatteryError

wscript.echo "MaxRechargeTime: " & objItem.MaxRechargeTime

wscript.echo "Name: " & objItem.Name

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "SmartBatteryVersion: " & objItem.SmartBatteryVersion

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "TimeOnBattery: " & objItem.TimeOnBattery

wscript.echo "TimeToFullCharge: " & objItem.TimeToFullCharge

wscript.echo " "

next

Chapter 10: Using System Hardware Classes 207
Quick Check

Q: Which class can be used to display information about writable CD-ROM devices on
a computer?

A: To display information about writable CD-ROM devices on a computer, you can use the
Win32_CDROMDrive class, but you need to filter out the word DVD from the Caption prop
erty.

Q: You are trying to retrieve information about the battery on your laptop computer,
but the query is coming back blank. What could be the problem?

A: If you are trying to retrieve information about the battery on your laptop computer but
the query is coming back blank, there could be two potential problems: the laptop maker
chose not to report battery information to WMI, or the laptop is currently running on
house electricity and not on battery power.

Printing Classes
There are nine printing classes. By using a combination of these classes, the network admin
istrator can bring a sense of order to the printing environment. The Win32_DriverForDevice
class relates printers and their drivers. The Win32_Printer class is the main class in this group;
weighing in at 86 properties and nine methods, it is certainly the heavyweight in this division.
The Win32_TCPIPPrinterPort class does not have any methods, but you can create a new
instance of the class, which gives you the ability to create printer ports anyway. In this section,
we will look at four of the nine printer-related classes. Information on the other classes can be
found in the Platform SDK. The printer classes are as follows:

■ Win32_DriverForDevice

■ Win32_Printer

■ Win32_PrinterConfiguration

■ Win32_PrinterController

■ Win32_PrinterDriver

■ Win32_PrinterDriverDll

■ Win32_PrinterSetting

■ Win32_PrintJob

■ Win32_TCPIPPrinterPort

Finding Drivers Used for Print Devices

The Win32_DriverForDevice association class relates a Win32_Printer to a Win32_PrintDriver.
Using a direct query to this class provides you with a list of all the printers and their drivers.

208 Part IV: Classes
This can be used by a network administrator to detect out-of-date print drivers on the net-
work. The Win32_DriverForDevice.vbs script uses the Win32_DriverForDevice class to pro
duce a list of printers and the drivers that are loaded for each printer. The Antecedent property
of this class comes from the Win32_Printer DeviceID property, and the Dependent property
comes from the Win32_PrintDriver Name property. These key values are used to link the two
classes together in the Win32_DriverForDevice class.

Win32_DriverForDevice.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_DriverForDevice"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems:With objItem

wscript.echo "Printer: " & .Antecedent

wscript.echo "Driver: " & .Dependent & vbcrlf

end with:next

Printing Information on Printers

The main class in the printing group is the Win32_Printer class. You use this class to return
information about the printer such as the printer capabilities, number of pages printed, and
sizes of paper the printer can handle. The use of the Win32_Printer class is illustrated in the
Win32_Printer.vbs script.

Win32_Printer.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_Printer"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Attributes: " & objItem.Attributes

wscript.echo "Availability: " & objItem.Availability

wscript.echo "AvailableJobSheets: " & objItem.AvailableJobSheets

wscript.echo "AveragePagesPerMinute: " & objItem.AveragePagesPerMinute

wscript.echo "Capabilities: " & join(objItem.Capabilities, ",")

wscript.echo "CapabilityDescriptions: " & join(objItem.CapabilityDescriptions, ",")

wscript.echo "Caption: " & objItem.Caption

wscript.echo "CharSetsSupported: " & objItem.CharSetsSupported

wscript.echo "Comment: " & objItem.Comment

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "CurrentCapabilities: " & objItem.CurrentCapabilities

wscript.echo "CurrentCharSet: " & objItem.CurrentCharSet

wscript.echo "CurrentLanguage: " & objItem.CurrentLanguage

wscript.echo "CurrentMimeType: " & objItem.CurrentMimeType

wscript.echo "CurrentNaturalLanguage: " & objItem.CurrentNaturalLanguage

wscript.echo "CurrentPaperType: " & objItem.CurrentPaperType

wscript.echo "Default: " & objItem.Default

Chapter 10: Using System Hardware Classes 209
wscript.echo "DefaultCapabilities: " & objItem.DefaultCapabilities

wscript.echo "DefaultCopies: " & objItem.DefaultCopies

wscript.echo "DefaultLanguage: " & objItem.DefaultLanguage

wscript.echo "DefaultMimeType: " & objItem.DefaultMimeType

wscript.echo "DefaultNumberUp: " & objItem.DefaultNumberUp

wscript.echo "DefaultPaperType: " & objItem.DefaultPaperType

wscript.echo "DefaultPriority: " & objItem.DefaultPriority

wscript.echo "Description: " & objItem.Description

wscript.echo "DetectedErrorState: " & objItem.DetectedErrorState

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "Direct: " & objItem.Direct

wscript.echo "DoCompleteFirst: " & objItem.DoCompleteFirst

wscript.echo "DriverName: " & objItem.DriverName

wscript.echo "EnableBIDI: " & objItem.EnableBIDI

wscript.echo "EnableDevQueryPrint: " & objItem.EnableDevQueryPrint

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "ErrorInformation: " & objItem.ErrorInformation

wscript.echo "ExtendedDetectedErrorState: " & objItem.ExtendedDetectedErrorState

wscript.echo "ExtendedPrinterStatus: " & objItem.ExtendedPrinterStatus

wscript.echo "Hidden: " & objItem.Hidden

wscript.echo "HorizontalResolution: " & objItem.HorizontalResolution

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "JobCountSinceLastReset: " & objItem.JobCountSinceLastReset

wscript.echo "KeepPrintedJobs: " & objItem.KeepPrintedJobs

wscript.echo "LanguagesSupported: " & objItem.LanguagesSupported

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "Local: " & objItem.Local

wscript.echo "Location: " & objItem.Location

wscript.echo "MarkingTechnology: " & objItem.MarkingTechnology

wscript.echo "MaxCopies: " & objItem.MaxCopies

wscript.echo "MaxNumberUp: " & objItem.MaxNumberUp

wscript.echo "MaxSizeSupported: " & objItem.MaxSizeSupported

wscript.echo "MimeTypesSupported: " & objItem.MimeTypesSupported

wscript.echo "Name: " & objItem.Name

wscript.echo "NaturalLanguagesSupported: " & objItem.NaturalLanguagesSupported

wscript.echo "Network: " & objItem.Network

wscript.echo "PaperSizesSupported: " & join(objItem.PaperSizesSupported, ",")

wscript.echo "PaperTypesAvailable: " & objItem.PaperTypesAvailable

wscript.echo "Parameters: " & objItem.Parameters

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PortName: " & objItem.PortName

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "PrinterPaperNames: " & objItem.PrinterPaperNames

wscript.echo "PrinterState: " & objItem.PrinterState

wscript.echo "PrinterStatus: " & objItem.PrinterStatus

wscript.echo "PrintJobDataType: " & objItem.PrintJobDataType

wscript.echo "PrintProcessor: " & objItem.PrintProcessor

wscript.echo "Priority: " & objItem.Priority

wscript.echo "Published: " & objItem.Published

wscript.echo "Queued: " & objItem.Queued

wscript.echo "RawOnly: " & objItem.RawOnly

wscript.echo "SeparatorFile: " & objItem.SeparatorFile

wscript.echo "ServerName: " & objItem.ServerName

210 Part IV: Classes
wscript.echo "Shared: " & objItem.Shared

wscript.echo "ShareName: " & objItem.ShareName

wscript.echo "SpoolEnabled: " & objItem.SpoolEnabled

wscript.echo "StartTime: " & objItem.StartTime

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "TimeOfLastReset: " & objItem.TimeOfLastReset

wscript.echo "UntilTime: " & objItem.UntilTime

wscript.echo "VerticalResolution: " & objItem.VerticalResolution

wscript.echo "WorkOffline: " & objItem.WorkOffline

wscript.echo " "

next

Printing the Print Jobs

The Win32_PrintJob class is used to describe a print job. As you can imagine, on a busy print
server, this class gets heavy use. With this particular class, keep in mind each instance of a
print job lives only until the print job is completed. Once the print job is finished, the
Win32_PrintJob class can no longer report on it. If you run the Win32_PrintJob.vbs script on
a computer that has no jobs in the print spooler, the script reports back no information. This
class basically provides a snapshot in time of print jobs.

Win32_PrintJob.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_PrintJob"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Caption: " & objItem.Caption

wscript.echo "DataType: " & objItem.DataType

wscript.echo "Description: " & objItem.Description

wscript.echo "Document: " & objItem.Document

wscript.echo "DriverName: " & objItem.DriverName

wscript.echo "ElapsedTime: " & objItem.ElapsedTime

wscript.echo "HostPrintQueue: " & objItem.HostPrintQueue

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "JobId: " & objItem.JobId

wscript.echo "JobStatus: " & objItem.JobStatus

wscript.echo "Name: " & objItem.Name

wscript.echo "Notify: " & objItem.Notify

wscript.echo "Owner: " & objItem.Owner

wscript.echo "PagesPrinted: " & objItem.PagesPrinted

wscript.echo "Parameters: " & objItem.Parameters

wscript.echo "PrintProcessor: " & objItem.PrintProcessor

wscript.echo "Priority: " & objItem.Priority

wscript.echo "Size: " & objItem.Size

wscript.echo "StartTime: " & objItem.StartTime

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusMask: " & objItem.StatusMask

Chapter 10: Using System Hardware Classes 211
wscript.echo "TimeSubmitted: " & objItem.TimeSubmitted

wscript.echo "TotalPages: " & objItem.TotalPages

wscript.echo "UntilTime: " & objItem.UntilTime

wscript.echo " "

next

Working with Printer Ports

The Win32_TCPIPPrinterPort class seems modest in comparison to some of the other printer
classes—17 properties, no methods—but this is a lean, mean, streamlined WMI class carefully
crafted to meet the most exacting needs of network administrators. All the essential printer
port properties can be reported by running the Win32_TCPIPPrinterPort.vbs script. If you
need to create a new printer port on a server, spawn a new instance of the class, make your
changes, and use the Put_ method to write it back to the WMI repository.

Win32_TCPIPPrinterPort.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_TCPIPPrinterPort"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "ByteCount: " & objItem.ByteCount

wscript.echo "Caption: " & objItem.Caption

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

wscript.echo "HostAddress: " & objItem.HostAddress

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "Name: " & objItem.Name

wscript.echo "PortNumber: " & objItem.PortNumber

wscript.echo "Protocol: " & objItem.Protocol

wscript.echo "Queue: " & objItem.Queue

wscript.echo "SNMPCommunity: " & objItem.SNMPCommunity

wscript.echo "SNMPDevIndex: " & objItem.SNMPDevIndex

wscript.echo "SNMPEnabled: " & objItem.SNMPEnabled

wscript.echo "Status: " & objItem.Status

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "Type: " & objItem.Type

wscript.echo " "

next

Telephony Classes
Two telephony classes are used to describe modems:

■ Win32_POTSModem

■ Win32_POTSModemToSerialPort

212 Part IV: Classes
Although many computer users in the United States are not using dial-up modems on a regu7
lar basis for Internet access, in other parts of the world, dial-up Internet access is still the stan7
dard. These two classes provide rich modem information. Lots of computers still use
modems, so the technology is not obsolete yet. For instance, many servers use modems to
send faxes and pages and to make remote server connections. Additionally, in many countries,
modem communication is one of the few types of remote access actually available and is used
routinely to connect offices. The classes in this category are really straightforward, and no
methods are implemented in either class. The Win32_PotsModem.vbs script and the
Win32_PotsModemToSerialPort.vbs script are included in the Chapter10 folder on the
accompanying CD.

Video and Monitor Classes
There are six video and monitor classes. Of these, two are obsolete, and one has been removed
from Microsoft Windows XP and Windows Server 2003. The two obsolete classes
(Win32_DisplayConfiguration and Win32_DisplayControllerConfiguration) still work and return
information, but they should not be relied upon. The Win32_VideoConfiguration class that was
removed from Windows XP and Windows Server 2003 still works for computers that run
Microsoft Windows 2000. The six video and monitor classes are as follows:

■ Win32_DesktopMonitor

■ Win32_DisplayConfiguration (obsolete)

■ Win32_DisplayControllerConfiguration (obsolete)

■ Win32_VideoConfiguration (removed from Windows XP and Windows Server 2003)

■ Win32_VideoController

■ Win32_VideoSettings

Displaying the Display

In the Windows XP and Windows Server 2003 realms, you will want to work with only three
video classes: Win32_DesktopMonitor, Win32_VideoController, and Win32_VideoSettings. Of
course, the obsolete classes mostly still work, but they are being replaced, so it is important to
begin migration to using other WMI classes. The most important of these WMI classes is the
Win32_DesktopMonitor class, which contains 28 WMI properties, including important prop7
erties that provide information such as whether the screen is locked and what the display res7
olution is. The Win32_DesktopMonitor.vbs script displays all 28 of these properties.

Win32_DesktopMonitor.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_DesktopMonitor"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Chapter 10: Using System Hardware Classes 213
For Each objItem in colItems

wscript.echo "Availability: " & objItem.Availability

wscript.echo "Bandwidth: " & objItem.Bandwidth

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "DisplayType: " & objItem.DisplayType

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "IsLocked: " & objItem.IsLocked

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "MonitorManufacturer: " & objItem.MonitorManufacturer

wscript.echo "MonitorType: " & objItem.MonitorType

wscript.echo "Name: " & objItem.Name

wscript.echo "PixelsPerXLogicalInch: " & objItem.PixelsPerXLogicalInch

wscript.echo "PixelsPerYLogicalInch: " & objItem.PixelsPerYLogicalInch

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "ScreenHeight: " & objItem.ScreenHeight

wscript.echo "ScreenWidth: " & objItem.ScreenWidth

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo " "

next

Controlling the Video

The Win32_VideoController class has 59 properties and no methods, which makes it the larg7
est video class on the system. In many respects, the video controller actually has the most
impact on video performance. Properties such as CurrentRefreshRate, MaxRefreshRate, and
AdapterRAM are most important to video performance. When working with the
Win32_VideoController class, you need to keep in mind the associations that are set up
between the controller card and each of the video settings. The number of these potential
instances of the class can be very confusing. This is shown in Figure 10-2.

214 Part IV: Classes
Figure 10-2 Video controller instances

It is the wise network administrator who understands these principles and who keeps tabs on
these properties. The Win32_VideoController.vbs script illustrates using this class to monitor
video performance.

Win32_VideoController.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_VideoController"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "AcceleratorCapabilities: " & objItem.AcceleratorCapabilities

wscript.echo "AdapterCompatibility: " & objItem.AdapterCompatibility

wscript.echo "AdapterDACType: " & objItem.AdapterDACType

wscript.echo "AdapterRAM: " & objItem.AdapterRAM

wscript.echo "Availability: " & objItem.Availability

wscript.echo "CapabilityDescriptions: " & objItem.CapabilityDescriptions

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ColorTableEntries: " & objItem.ColorTableEntries

wscript.echo "ConfigManagerErrorCode: " & objItem.ConfigManagerErrorCode

wscript.echo "ConfigManagerUserConfig: " & objItem.ConfigManagerUserConfig

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "CurrentBitsPerPixel: " & objItem.CurrentBitsPerPixel

wscript.echo "CurrentHorizontalResolution: " & objItem.CurrentHorizontalResolution

wscript.echo "CurrentNumberOfColors: " & objItem.CurrentNumberOfColors

wscript.echo "CurrentNumberOfColumns: " & objItem.CurrentNumberOfColumns

wscript.echo "CurrentNumberOfRows: " & objItem.CurrentNumberOfRows

wscript.echo "CurrentRefreshRate: " & objItem.CurrentRefreshRate

wscript.echo "CurrentScanMode: " & objItem.CurrentScanMode

Chapter 10: Using System Hardware Classes 215
wscript.echo "CurrentVerticalResolution: " & objItem.CurrentVerticalResolution

wscript.echo "Description: " & objItem.Description

wscript.echo "DeviceID: " & objItem.DeviceID

wscript.echo "DeviceSpecificPens: " & objItem.DeviceSpecificPens

wscript.echo "DitherType: " & objItem.DitherType

wscript.echo "DriverDate: " & objItem.DriverDate

wscript.echo "DriverVersion: " & objItem.DriverVersion

wscript.echo "ErrorCleared: " & objItem.ErrorCleared

wscript.echo "ErrorDescription: " & objItem.ErrorDescription

wscript.echo "ICMIntent: " & objItem.ICMIntent

wscript.echo "ICMMethod: " & objItem.ICMMethod

wscript.echo "InfFilename: " & objItem.InfFilename

wscript.echo "InfSection: " & objItem.InfSection

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "InstalledDisplayDrivers: " & objItem.InstalledDisplayDrivers

wscript.echo "LastErrorCode: " & objItem.LastErrorCode

wscript.echo "MaxMemorySupported: " & objItem.MaxMemorySupported

wscript.echo "MaxNumberControlled: " & objItem.MaxNumberControlled

wscript.echo "MaxRefreshRate: " & objItem.MaxRefreshRate

wscript.echo "MinRefreshRate: " & objItem.MinRefreshRate

wscript.echo "Monochrome: " & objItem.Monochrome

wscript.echo "Name: " & objItem.Name

wscript.echo "NumberOfColorPlanes: " & objItem.NumberOfColorPlanes

wscript.echo "NumberOfVideoPages: " & objItem.NumberOfVideoPages

wscript.echo "PNPDeviceID: " & objItem.PNPDeviceID

wscript.echo "PowerManagementCapabilities: " & objItem.PowerManagementCapabilities

wscript.echo "PowerManagementSupported: " & objItem.PowerManagementSupported

wscript.echo "ProtocolSupported: " & objItem.ProtocolSupported

wscript.echo "ReservedSystemPaletteEntries: " & objItem.ReservedSystemPaletteEntries

wscript.echo "SpecificationVersion: " & objItem.SpecificationVersion

wscript.echo "Status: " & objItem.Status

wscript.echo "StatusInfo: " & objItem.StatusInfo

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "SystemPaletteEntries: " & objItem.SystemPaletteEntries

wscript.echo "TimeOfLastReset: " & objItem.TimeOfLastReset

wscript.echo "VideoArchitecture: " & objItem.VideoArchitecture

wscript.echo "VideoMemoryType: " & objItem.VideoMemoryType

wscript.echo "VideoMode: " & objItem.VideoMode

wscript.echo "VideoModeDescription: " & objItem.VideoModeDescription

wscript.echo "VideoProcessor: " & objItem.VideoProcessor

wscript.echo " "

next

Summary
In this chapter, we looked at the system hardware grouping of WMI classes. This category of
WMI classes includes cooling device, pointing device, keyboard, storage device, motherboard,
networking, video, and printer classes. These classes form the basis for managing computer
hardware from the WMI perspective. Many of these classes include methods that enable you
to perform hardware configuration. Classes such as Win32_NetworkAdapterConfiguration
expose dozens of methods that enable you to configure the hardware in nearly every conceiv-

216 Part IV: Classes
able way—remotely, securely, and by using an easily written VBScript. Some of the other
classes in this category enable you to perform hardware manipulation, but you first have to
create a new instance of the class and then make the changes. Classes such as
Win32_TCPIPPrinterPort fall into this group.

Quiz Yourself
Q: You have been getting a number of calls from users who indicate their keyboards
do not seem to work properly. This issue has been traced back to various regional
settings used on some of the computers. What is one property of the keyboard that
can be used to see if the keyboard malfunction is a regional settings issue?

A: To tackle the problem of various regional settings used on some computers and their
impact on keyboard configuration, you can use the Layout property of the
Win32_Keyboard class. This property reports the language setting as an integer. U.S.
English is reported as 409.

Q: You are trying to create a list of computers on the network that have video cards
with more than 32 megabytes (MB) of video random access memory (RAM). Which
class and property can be used to return this information?

A: To determine the amount of video RAM on a computer, you can use the
Win32_VideoController class and look at the AdapterRAM property.

Q: You need to find out which portable computers on the network have built-in wire-
less network adapters. Which WMI class can retrieve this information for you?

A: To find which portable computers on the network have built-in wireless network
adapters, you can use the Win32_PortConnector class and write a filter to pull the infor7
mation from the ExternalReferenceDesignator property.

On Your Own

Lab 21 Hardware Inventory

In this lab, you will create a script that performs a basic hardware inventory scan of some of
the more important subsystems: networking, processor, memory, disk drive, and port config7
uration. You might use a script like this to plan a hardware upgrade.

1. Open the wmiTemplate.vbs script, and save it as StudentLab21.vbs.

2. Turn off the On Error Resume Next statement by remarking it out.

3.	 Define three more variables to be used to hold queries: wmiQuery1, wmiQuery2,
wmiQuery3. Place them next to the wmiQuery variable.

Chapter 10: Using System Hardware Classes 217
4.	 Do the same thing for the objItem and the colItems variables. When you are done, the
variables look like the following:

dim strComputer

dim wmiNS

dim wmiQuery, wmiQuery1, wmiQuery2, wmiQuery3

dim objWMIService

dim colItems, colItems1, colItems2, colItems3

dim objItem, objItem1, objItem2, objItem3

5.	 In the reference section of the script, define four WMI queries: wmiQuery, wmiQuery1,
wmiQuery2, and wmiQuery3. All four queries will be Select * From queries. The classes
you will use are the following: Win32_Processor, Win32_NetworkAdapter, Win32_Physical-
Memory, and Win32_DiskDrive. The queries look like the following when you are done:

wmiQuery = "Select * from win32_Processor"

wmiQuery1 = "Select * from win32_networkAdapter"

wmiQuery2 = "Select * from win32_PhysicalMemory"

wmiQuery3 = "Select * from win32_DiskDrive"

6.	 You need only one connection into WMI, so leave the Set ObjWmiService line of code
alone.

7.	 Now you need to execute the four WMI queries. To do this, use all four Set colItems com7
mands. You will need to modify the first Set colItems command and copy it three times.
Use colItems1 through 3 and wmiQuery1 through 3. It should look like the following
when you are done:

Set colItems = objWMIService.ExecQuery(wmiQuery)

Set colItems1 = objWMIService.ExecQuery(wmiQuery1)

Set colItems2 = objWMIService.ExecQuery(wmiQuery2)

Set colItems3 = objWMIService.ExecQuery(wmiQuery3)

8.	 Copy the For Each Next block and paste it three times under the original one. Now you
need to modify each one to use objItem1, objItem2, or objItem3. When you are done, it
looks like the following:

For Each objItem in colItems

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Next

For Each objItem1 in colItems1

Wscript.Echo ": " & objItem1.

Wscript.Echo ": " & objItem1.

Wscript.Echo ": " & objItem1.

Wscript.Echo ": " & objItem1.

Wscript.Echo ": " & objItem1.

Wscript.Echo ": " & objItem1.

Next

For Each objItem2 in colItems2

218 Part IV: Classes
Wscript.Echo ": " & objItem2.

Wscript.Echo ": " & objItem2

Wscript.Echo ": " & objItem2

Wscript.Echo ": " & objItem2.

Wscript.Echo ": " & objItem2.

Wscript.Echo ": " & objItem2.

Next

For Each objItem3 in colItems3

Wscript.Echo ": " & objItem3.

Wscript.Echo ": " & objItem3.

Wscript.Echo ": " & objItem3.

Wscript.Echo ": " & objItem3.

Wscript.Echo ": " & objItem3.

Wscript.Echo ": " & objItem3.

Next

9.	 The first WMI query, wmiQuery, uses the Win32_Processor class. You are interested in
three properties: Caption, CurrentClockSpeed, and L2CacheSize. Delete all the unused
Wscript.Echo commands. Modify the first For Each Next block as shown here:

For Each objItem in colItems

Wscript.Echo ": " & objItem.Caption

Wscript.Echo ": " & objItem.CurrentClockSpeed

Wscript.Echo ": " & objItem.L2CacheSize

Next

10. The second WMI query, wmiQuery1, uses the Win32_NetworkAdapter class. You are
interested in two properties: Caption and MaxSpeed. Delete the unused Wscript.Echo
commands. Once you make the change to the second For Each Next loop, the code looks
like the following:

For Each objItem1 in colItems1

Wscript.Echo ": " & objItem1.Caption

Wscript.Echo ": " & objItem1.MaxSpeed

Next

11. The third WMI query, wmiQuery2, uses the Win32_PhysicalMemory class. You are inter7
ested in two properties: DeviceLocator and Capacity. Delete the unused Wscript.Echo
commands. The modified For Each Next loop looks like the following:

For Each objItem2 in colItems2

Wscript.Echo ": " & objItem1.DeviceLocator

Wscript.Echo ": " & objItem1.Capacity

Next

12. The last WMI query, wmiQuery3, uses the Win32_DiskDrive class. You are interested in
two properties: Name and Size. Delete the unused Wscript.Echo commands. The modi7
fied For Each Next loop looks like the following:

For Each objItem3 in colItems3

Wscript.Echo ": " & objItem1.Name

Wscript.Echo ": " & objItem1.Size

Next

Chapter 10: Using System Hardware Classes 219
13. Save and run the script; it should run fine. Now, you want to go back and dress up the
display. To do so, use the SeparatorLine function. Add the SeparatorLine function to the
Name, Caption, DeviceLocator, and Caption properties in each of the four groupings.

14. Copy the function from the SeparatorLine.vbs script in the Chapter10\Lab21 folder,
and paste it at the bottom of the script. Now run the script; it should work fine.

15. The last cleanup step is to add the property names in front of the colon (:) in each
Wscript.Echo command. The first For Each Next loop looks like the following:

For Each objItem in colItems

Wscript.Echo funLine("Caption: " & objItem.Caption)

Wscript.Echo "CurrentClockSpeed: " & objItem.CurrentClockSpeed

Wscript.Echo "L2CacheSize: " & objItem.L2CacheSize

Next

16. Make sure you have completed each of the four For Each Next loops, and then save and
run the script. It should run fine.

Chapter 11

Using Operating System Classes

In Chapter 10, we examined the nine different categories of system hardware Microsoft Win
dows Management Instrumentation (WMI) classes. In this chapter, we look at the operating
system classes. There are 21 groups of operating system classes available for the enterprising
network administrator. Classes in this category enable you to query and set screen savers,
work with the file system, create scheduled tasks, and much more. A useful overview of the
operating system classes is contained in Appendix E.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of using the WMI moniker

■ The basics of using the ConnectServer method

■ Use of WMI methods

■ The basics of WMI providers

After you complete this chapter, you will be familiar with the following concepts:

■ The organization of the operating system classes

■ The use of operating system classes to manage Microsoft Windows environments

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter11 folder.

Using the COM-Related Classes
The Component Object Model (COM) category represents both COM and Distributed Com
ponent Object Model (DCOM) settings and classes as well as settings for client applications.
There are 7 instance classes and 10 association classes in this group. These classes are docu
mented in Appendix E, Table E-1. There are no methods in any of these classes, but the prop
erties described by them can be very useful to the network administrator.
221

222 Part IV: Classes
Using the Win32_ClassicComClass

COM classic—got to love that name. The Win32_ClassicComClass is one of the most basic WMI
COM classes that we will examine. The basic script called Win32_ClassicComClass.vbs is
located in the cimv2 folder on the accompanying CD. This script returns everything about
every COM class on my computer. When I run it, it takes nearly 5 minutes to complete and
returns more than 32,000 lines of information—a bit more reading than I want to do. So, I
modified the Win32_ClassicComClass.vbs script so that it searches for information related to
WMI only.

The first change I made for ease of maintenance and ease of use was to modify the WMI query
to use a variable to contain the Where clause. You could change the script further to use an
input box. The Where clause uses a WMI feature that exists only in Microsoft Windows XP and
Windows Server 2003—the LIKE operator. By using a percent sign (%) before and after the
word you’re searching for, in this case WMI, you direct WMI to come back with information
that contains the letters WMI. The last pretty cool modification I made was to use a function
to put the Where clause together. You have to change only the term, or the word you are
searching for among the COM classes—and, like magic, the answer is returned by the Classic-
ComClassWMI.vbs script as listed here.

ClassicComClassWMI.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strWhere = funQuery("wmi")

wmiQuery = "Select * from Win32_ClassicCOMClass" & strWhere

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ComponentId: " & objItem.ComponentId

wscript.echo "Description: " & objItem.Description

wscript.echo "Name: " & objItem.Name & vbcrlf

Next

Function funQuery(strwmi)

funQuery = " where caption like " & "'%" & strwmi & "%'"

End function

Examining the Desktop
The desktop classes are used to describe the various configuration settings available for the
Windows desktop. Four classes are in this category. There are no methods, but there are two
fairly large classes—the Win32_TimeZone class with 24 properties, and the Win32_Desktop
class with 21 properties. The most useful class might be the Win32_Environment class because
it contains three properties that are writable and enables the network administrator to modify
Windows environment strings. The fourth class in this category, Win32_UserDesktop, is an

Chapter 11: Using Operating System Classes 223
association class that relates a particular user on a system to specific desktop settings. The
four desktop-related classes are as follows:

■ Win32_Desktop

■ Win32_Environment

■ Win32_TimeZone

■ Win32_UserDesktop

Listing the Drivers on a System
The drivers category is used to describe both the virtual device drivers and the system drivers
that form the base operating system. Only two classes are in this category:

■ Win32_DriverVXD

■ Win32_SystemDriver

Examining System Drivers

If you are working with a particular driver, and you need to find out more about it, the easiest
way is to write a script that uses the Win32_SystemDriver class. In the Win32_SystemDriver-
Specific.vbs script, I use a Where clause to limit the data returned to only the drivers specified
in the input box. To use this script, you need not know the specific driver name because you
can use the LIKE operator to make a fuzzy match. The Where clause is contained inside a func
tion called FunFix, which adds limiting parameters in the search. Using the function in this
manner enables you simply to type the name of the driver you are looking for in the input box.

Win32_SystemDriverSpecific.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strWhere =funfix(InputBox("what driver are you looking for"))

wmiQuery = "Select * from Win32_SystemDriver" & strWhere

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "AcceptPause: " & objItem.AcceptPause

wscript.echo "AcceptStop: " & objItem.AcceptStop

wscript.echo "Caption: " & objItem.Caption

wscript.echo "CreationClassName: " & objItem.CreationClassName

wscript.echo "Description: " & objItem.Description

wscript.echo "DesktopInteract: " & objItem.DesktopInteract

wscript.echo "DisplayName: " & objItem.DisplayName

wscript.echo "ErrorControl: " & objItem.ErrorControl

wscript.echo "ExitCode: " & objItem.ExitCode

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "Name: " & objItem.Name

wscript.echo "PathName: " & objItem.PathName

224 Part IV: Classes
wscript.echo "ServiceSpecificExitCode: " & objItem.ServiceSpecificExitCode

wscript.echo "ServiceType: " & objItem.ServiceType

wscript.echo "Started: " & objItem.Started

wscript.echo "StartMode: " & objItem.StartMode

wscript.echo "StartName: " & objItem.StartName

wscript.echo "State: " & objItem.State

wscript.echo "Status: " & objItem.Status

wscript.echo "SystemCreationClassName: " & objItem.SystemCreationClassName

wscript.echo "SystemName: " & objItem.SystemName

wscript.echo "TagId: " & objItem.TagId & vbcrlf

Next

Function FunFix (strWhere)

funFix = " where name like '%" & strWhere & "%'"

End function

Exploring the File System
Nineteen classes are used to describe and manipulate the Windows file system. These classes
enable you to retrieve information on directories and quotas and represent the drive in a log
ical manner. The 19 classes are listed in Appendix E, Table E-4. Some of these classes are ripe
for exploration. For example, the Win32_Directory class has 31 properties and 14 methods.
Something in this class might be useful to network administrators. Win32_LogicalDisk is used
to represent the logical configuration of a disk drive, and it has 40 properties and 5 methods—
it, too, can be useful to network administrators.

Working with Directories

Three classes are specifically related to directories: Win32_Directory, Win32_SubDirectory, and
Win32_DirectorySpecification. The most powerful class in this group is Win32_Directory.

Getting the Win32_Directory Class

When you work with many of the WMI classes related to the file system, you must replace
the normal single backslash (\) with a double backslash (\\). This substitution must be
made everywhere a backslash is normally used. In the Get_Win32_Directory.vbs script, I
connect to a specific folder called C:\A. To make this connection, I use the notation c:\\a.
The Win32_Directory class has only one key—the Name property, as shown in Figure 11-1.
Because the class has only one key, you need not repeat the name of the property in the
query.

Chapter 11: Using Operating System Classes 225
Figure 11-1 Win32_Directory properties

Note The WMI query is held in the variable called wmiQuery as shown here:

wmiQuery = "Win32_Directory='c:\\a'"

When you run the Get_Win32_Directory.vbs script, it will work fine as long as there is a direc
tory called A on the C drive. This line of code is exactly the same as the following:

wmiQuery = "Win32_Directory.name='c:\\a'"

In my mind, the choice is simply a matter of personal preference. Normally, I do specify the
name of the property to aid in readability. It is very confusing to people who do not under-
stand this shortcut method of notation—particularly because it is not a very well-documented
shortcut!

Get_Win32_Directory.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_Directory='c:\\a'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

With objItem

msg = "AccessMask: " & .AccessMask

msg = msg & vbcrlf & "Archive: " & .Archive

msg = msg & vbcrlf & "Caption: " & .Caption

msg = msg & vbcrlf & "Compressed: " & .Compressed

msg = msg & vbcrlf & "CompressionMethod: " & .CompressionMethod

msg = msg & vbcrlf & "CreationClassName: " & .CreationClassName

msg = msg & vbcrlf & "CreationDate: " & .CreationDate

226 Part IV: Classes
msg = msg & vbcrlf & "CSCreationClassName: " & .CSCreationClassName

msg = msg & vbcrlf & "CSName: " & .CSName

msg = msg & vbcrlf & "Description: " & .Description

msg = msg & vbcrlf & "Drive: " & .Drive

msg = msg & vbcrlf & "EightDotThreeFileName: " & .EightDotThreeFileName

msg = msg & vbcrlf & "Encrypted: " & .Encrypted

msg = msg & vbcrlf & "EncryptionMethod: " & .EncryptionMethod

msg = msg & vbcrlf & "Extension: " & .Extension

msg = msg & vbcrlf & "FileName: " & .FileName

msg = msg & vbcrlf & "FileSize: " & .FileSize

msg = msg & vbcrlf & "FileType: " & .FileType

msg = msg & vbcrlf & "FSCreationClassName: " & .FSCreationClassName

msg = msg & vbcrlf & "FSName: " & .FSName

msg = msg & vbcrlf & "Hidden: " & .Hidden

msg = msg & vbcrlf & "InstallDate: " & .InstallDate

msg = msg & vbcrlf & "InUseCount: " & .InUseCount

msg = msg & vbcrlf & "LastAccessed: " & .LastAccessed

msg = msg & vbcrlf & "LastModified: " & .LastModified

msg = msg & vbcrlf & "Name: " & .Name

msg = msg & vbcrlf & "Path: " & .Path

msg = msg & vbcrlf & "Readable: " & .Readable

msg = msg & vbcrlf & "Status: " & .Status

msg = msg & vbcrlf & "System: " & .System

msg = msg & vbcrlf & "Writeable: " & .Writeable

End With

WScript.echo msg

Understanding Job Objects
Fourteen classes are used to describe and instrument named job objects. These classes are
supplied by the job object provider (called NamedJobObjectProv in the registration with
__Win32Provider), which is installed by default in Windows XP and Windows Server 2003.
The provider and the classes live in the root\cimv2 namespace. Previous versions of the Win
dows operating system do not contain the job object provider; therefore, these classes will not
work. These must be named job objects because unnamed job objects cannot be instru
mented.

Identifying Named Job Objects

A job object is a kernel object that is used by the operating system to treat a group of processes
as a single entity for the purpose of managing the resources and the life cycle of those pro
cesses. You can work only with named job objects, so you must identify any named job objects
that are running on your system. To do this, use the Win32_NamedJobObject class. On my lap-
top, the Win32_NamedJobObject.vbs script retrieves only one named job object—but at least
I know how many instances of Win32_NamedJobObject reside on my computer.

Chapter 11: Using Operating System Classes 227
Win32_NamedJobObject.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_NamedJobObject"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "BasicUIRestrictions: " & objItem.BasicUIRestrictions

wscript.echo "Caption: " & objItem.Caption

wscript.echo "CollectionID: " & objItem.CollectionID

wscript.echo "Description: " & objItem.Description

wscript.echo " "

next

Identifying Resources Used by Job Objects

Once you have identified the presence of a job object on your computer, you might want to see
which resources the object is consuming. To do this, use the Win32_NamedJobObjectActgInfo
class, which provides the name of the job object, the number of processes in the job object,
and the amount of memory, page faults, and other performance-related information. The
Win32_NamedJobObjectActgInfo.vbs script uses this class.

Win32_NamedJobObjectActgInfo.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_NamedJobObjectActgInfo"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

With objItem

wscript.echo "ActiveProcesses: " & .ActiveProcesses

wscript.echo "Caption: " & .Caption

wscript.echo "Description: " & .Description

wscript.echo "Name: " & .Name

wscript.echo "OtherOperationCount: " & .OtherOperationCount

wscript.echo "OtherTransferCount: " & .OtherTransferCount

wscript.echo "PeakJobMemoryUsed: " & .PeakJobMemoryUsed

wscript.echo "PeakProcessMemoryUsed: " & .PeakProcessMemoryUsed

wscript.echo "ReadOperationCount: " & .ReadOperationCount

wscript.echo "ReadTransferCount: " & .ReadTransferCount

wscript.echo "ThisPeriodTotalKernelTime: " & .ThisPeriodTotalKernelTime

wscript.echo "ThisPeriodTotalUserTime: " & .ThisPeriodTotalUserTime

wscript.echo "TotalKernelTime: " & .TotalKernelTime

wscript.echo "TotalPageFaultCount: " & .TotalPageFaultCount

wscript.echo "TotalProcesses: " & .TotalProcesses

wscript.echo "TotalTerminatedProcesses: " & .TotalTerminatedProcesses

wscript.echo "TotalUserTime: " & .TotalUserTime

wscript.echo "WriteOperationCount: " & .WriteOperationCount

wscript.echo "WriteTransferCount: " & .WriteTransferCount & vbcrlf

End with Next

228 Part IV: Classes
Working with Memory Devices and Page Files
The six classes in this category are used to describe virtual memory and physical memory
objects. Two classes are obsolete and one is deprecated. The deprecated class, Win32_PageFile,
can still be used, but its functionality has been replaced by the newer classes in this group. The
Win32_PageFileElementSetting class is an association class that relates a page file to its settings
and utilization. The Win32_PageFileSetting class is used to make setting and configuration
changes on the page file or to report the settings that have been defined. Win32_PageFileUsage
reports on how a page file is being utilized. We delve into the Win32_PageFileSetting class in the
following subsection. A listing of all the classes in this category is as follows:

■ Win32_PageFileElementSetting

■ Win32_PageFileSetting

■ Win32_PageFileUsage

■ Win32_LogicalMemoryConfiguration (obsolete)

■ Win32_PageFile (deprecated)

■ Win32_SystemLogicalMemoryConfiguration (obsolete)

Setting the Page File

The Win32_PageFileSetting class does not have any methods, but it has several properties that
are read/write. If you want to change the initial size of the page file, do not call the Setpagefile
method; rather write a new value to the InitialSize property. In the Change_PageFileSetting.vbs
script, I use the Get method to connect to a specific page file—the default Pagefile.sys. I perform
a query to list the properties of the page file, and then I change the initial size of the page file to
19 megabytes (MB). Once I assign a value to this property, I have to use the Put_ method to
write it back to the database. Then I echo out the new value of the property to confirm the set
ting was accepted.

Change_PageFileSetting.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_PageFileSetting='c:\pagefile.sys'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Description: " & objItem.Description

wscript.echo "InitialSize: " & objItem.InitialSize

wscript.echo "MaximumSize: " & objItem.MaximumSize

wscript.echo "Name: " & objItem.Name

wscript.echo "SettingID: " & objItem.SettingID

WScript.Echo "let’s change the initial size"

objItem.initialSize = 19

Chapter 11: Using Operating System Classes 229
objItem.put_

WScript.Echo "the new size is now: " & objItem.initialsize

Using the Multimedia Audiovisual Class
One class is in the multimedia audiovisual category: the Win32_CodecFile class is used to
describe various codecs that are located on a computer running the Windows operating sys
tem. Win32_CodecFile is derived from Win32_DataFile and, as a result, inherits 14 methods.
Unfortunately, these methods have very little to do with installed codecs on your computer
because they are methods that enable you to work with file system objects in a generic fash
ion. The Win32_CodecFile.vbs script (in the cimv2 folder on the companion CD) prints out
all the properties associated with a codec, for every codec installed on your computer.

Retrieving a Single Codec

You could easily modify the script to look for the presence of one critical codec. This is what I
did in GetWin32_CodecFile.vbs. When retrieving a single codec file, you need to use the dou
ble backslash as discussed earlier. The other rather unusual characteristic of this script is the
requirement to supply the file path in double double quotation marks—this means we end the
query with three sets of closing double quotation marks as shown in the wmiQuery line. Sin
gle quotation marks that are normally used to supply a value to WMI do not work in this sit
uation—and to use double quotation marks to supply a value, you need to use two sets
(double double quotation marks) because the first set is interpreted as the string terminator.

GetWin32_CodecFile.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_CodecFile=""C:\\WINDOWS\\system32\\MSAUD32.ACM"""

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

With objItem

wscript.echo "AccessMask: " & .AccessMask

wscript.echo "Caption: " & .Caption

wscript.echo "Compressed: " & .Compressed

wscript.echo "CompressionMethod: " & .CompressionMethod

wscript.echo "CreationClassName: " & .CreationClassName

wscript.echo "CreationDate: " & .CreationDate

wscript.echo "CSCreationClassName: " & .CSCreationClassName

wscript.echo "CSName: " & .CSName

wscript.echo "Description: " & .Description

wscript.echo "Encrypted: " & .Encrypted

wscript.echo "EncryptionMethod: " & .EncryptionMethod

wscript.echo "Extension: " & .Extension

wscript.echo "FileName: " & .FileName

wscript.echo "FileSize: " & .FileSize

wscript.echo "FileType: " & .FileType

wscript.echo "FSCreationClassName: " & .FSCreationClassName

wscript.echo "FSName: " & .FSName

wscript.echo "Group: " & .Group

230 Part IV: Classes
wscript.echo "Hidden: " & .Hidden

wscript.echo "InstallDate: " & .InstallDate

wscript.echo "LastAccessed: " & .LastAccessed

wscript.echo "LastModified: " & .LastModified

wscript.echo "Manufacturer: " & .Manufacturer

wscript.echo "Name: " & .Name

wscript.echo "Path: " & .Path

wscript.echo "System: " & .System

wscript.echo "Version: " & .Version

wscript.echo "Writeable: " & .Writeable

End With

Working with Networking
Ten classes are used to describe networking on a computer running the Windows operating
system. These classes enable the network administrator to work with Internet Protocol (IP)
routing tables, the network client, connections, protocols, and domain information. One of
the more interesting networking classes, Win32_NTDomain, retrieves information you would
not normally expect to get back from WMI—Active Directory directory service configuration
information. When a client machine is a member of an Active Directory domain, two instances
are reported for this class. The first instance is specific to the workstation and reports back in
the form Domain: computername. The second instance reports back in the form: Domain:
domainname. Note that the space is required between the colon following the domain and the
name of the instance you are trying to retrieve. In the GetWin32_NTDomain.vbs script, I use
this feature of the class to retrieve information about the Active Directory configuration by
connecting specifically to the domain instance. With this class, you can supply the value
inside single quotation marks.

GetWin32_NTDomain.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_NTDomain='Domain: nwtraders'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

With objItem

wscript.echo "Caption: " & .Caption

wscript.echo "ClientSiteName: " & .ClientSiteName

wscript.echo "CreationClassName: " & .CreationClassName

wscript.echo "DcSiteName: " & .DcSiteName

wscript.echo "Description: " & .Description

wscript.echo "DnsForestName: " & .DnsForestName

wscript.echo "DomainControllerAddress: " & .DomainControllerAddress

wscript.echo "DomainControllerAddressType: " & .DomainControllerAddressType

wscript.echo "DomainControllerName: " & .DomainControllerName

wscript.echo "DomainGuid: " & .DomainGuid

wscript.echo "DomainName: " & .DomainName

wscript.echo "DSDirectoryServiceFlag: " & .DSDirectoryServiceFlag

wscript.echo "DSDnsControllerFlag: " & .DSDnsControllerFlag

Chapter 11: Using Operating System Classes 231
wscript.echo "DSDnsDomainFlag: " & .DSDnsDomainFlag

wscript.echo "DSDnsForestFlag: " & .DSDnsForestFlag

wscript.echo "DSGlobalCatalogFlag: " & .DSGlobalCatalogFlag

wscript.echo "DSKerberosDistributionCenterFlag: " & .DSKerberosDistributionCenterFlag

wscript.echo "DSPrimaryDomainControllerFlag: " & .DSPrimaryDomainControllerFlag

wscript.echo "DSTimeServiceFlag: " & .DSTimeServiceFlag

wscript.echo "DSWritableFlag: " & .DSWritableFlag

wscript.echo "InstallDate: " & .InstallDate

wscript.echo "Name: " & .Name

wscript.echo "NameFormat: " & .NameFormat

wscript.echo "PrimaryOwnerContact: " & .PrimaryOwnerContact

wscript.echo "PrimaryOwnerName: " & .PrimaryOwnerName

wscript.echo "Roles: " & .Roles

wscript.echo "Status: " & .Status

End with

Using Operating System Events
Fourteen classes represent operating system events. These classes can be used to respond to
various events that arise on servers or workstations that run the Windows operating system.
If a process starts up or shuts down, it generates the appropriate event. The event classes are
listed in Appendix E, Table E-9. In some cases, these event classes duplicate functionality that
could be achieved by using one of the standard event classes we discussed in Chapter 5. Other
classes offer new and exciting functionality that simply is not available elsewhere. All of the
classes are easier to use and make for a cleaner, more straightforward solution than if you were
to try to achieve similar functionality using the generic event queries. An example of this is the
Win32_ProcessStartup class, which enables you to write a script that responds to the startup
event of a process. You can achieve similar results by using a query that looks for instance cre
ation events if the instance is a Win32_Process, but that query is more difficult to write and to
understand. To illustrate the ease of use of operating system event classes, look at the Moni
torProcessStartUp.vbs script.

MonitorProcessStartUp.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "SELECT * FROM Win32_ProcessStartTrace"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

WScript.Echo "Waiting for process to start ..."

Do

Set objItem = colItems.NextEvent

With objItem

Wscript.Echo "StartedProcess Name: " & .ProcessName

Wscript.Echo "Process ID: " & .ProcessId

WScript.Echo "Time Generated: " & .Time_Created

WScript.Echo "SID: " & Join(.SID)

WScript.Echo "Session ID: " & .sessionID

End With

Loop

232 Part IV: Classes
Examining Operating System Settings
There are 31 classes in the operating system settings group. Of these classes, the majority are
association classes. Of the 31, only 9 are actual instance classes. Table E-10 in Appendix E
details all the operating system settings classes. These classes are used to retrieve configura
tion information and to make changes to the way computers running the Windows operating
system behave. One class represents startup commands and other configuration information.
The most important class in this group is appropriately called Win32_OperatingSystem. This
class has been expanded in Windows XP and Windows Server 2003. In addition to including
many properties, it also has four methods.

One of the instance classes that is useful is the Win32_LoadOrderGroup class, which provides
information about the order in which system services are loaded on system startup; hence the
order in which these services will start. You can use this to determine dependencies. This can
be interesting from an academic perspective, but on the other hand, the information can be
used to optimize system startup or system shutdown. In the Win32_LoadOrderGroup.vbs
script, I obtain a list of system services and the order in which they start up.

Win32_LoadOrderGroup.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_LoadOrderGroup"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Description: " & objItem.Description

wscript.echo "DriverEnabled: " & objItem.DriverEnabled

wscript.echo "GroupOrder: " & objItem.GroupOrder

wscript.echo "Name: " & objItem.Name

wscript.echo "Status: " & objItem.Status & vbcrlf

next

Employing the Process Classes
Three WMI classes are used to work with processes:

■ Win32_Process

■ Win32_Thread

■ Win32_ProcessStartUp

The Win32_Process class and the Win32_Thread class are instance classes that represent actual
processes and threads running on the system. The Win32_ProcessStartUp class is rather
unusual. It is used to pass information to Win32_Process. We look at how it is used in the fol
lowing subsection.

Chapter 11: Using Operating System Classes 233
Configuring Application Startup

In the ConfigureAndLaunchApp.vbs script, I use both the Win32_Process class and the
Win32_ProcessStartUp class to configure and launch an application on a computer. I use the
Create method from the Win32_Process class to launch the application, but to configure the
way the application is actually started, I use the Win32_ProcessStartUp class to set the startup
parameters.

In this type of script, the first thing you need to do is get the Win32_ProcessStartUp class. Do
this by using the Get method. Next, get the Win32_Process class. Once you have these two
classes, use the SpawnInstance_ method to create a new instance of the Win32_ProcessStartUp
class. This enables you to specify the startup parameters.

Specifying Window Parameters

Once you have created a new process startup object, you can assign some parameters to it. In
the ConfigureAndLaunchApp.vbs script, I use three properties: x, y, and ShowWindow. The x
and y properties are used to assign the starting position offset location for a new window that
is created when the application launches. This value is measured in pixels.

The ShowWindow property indicates how the window will appear once the application is
launched. A value of 1 means to launch in a normal window. A value of 2 means to activate the
window but show it in a minimized state. The application must support the different window
styles, or it will ignore the property.

Using the Create Method

After you have specified the startup parameters for the application, it is time to use the Create
method of the Win32_Process class to actually launch the process. The first thing you see when
working with this method is that it requires you to capture the return code. Even if you have no
intention of using it, you must catch the return. Once you have created the variable to catch the
return code, you supply the parameters. The first parameter is the process you wish to create,
and the next value is the current drive and directory for the process. If you specify the value as
NULL, it uses the process that is created and inherits the same path and directory from the call
ing process. The value you supply for this parameter must be able to be resolved. You can use
a Universal Naming Convention (UNC) path or hard code an absolute value. Using the
Win32_ProcessStartUp class, you can specify environmental variables in addition to the direc
tory information used for this class. The next parameter is the variable you use to hold the
Win32_ProcessStartUp object. Last, you specify the variable that will hold the process ID that is
generated by creating the new process. When you run ConfigureAndLaunchApp.vbs, you will
need to verify the path to Wordpad.exe on your system.

234 Part IV: Classes
ConfigureAndLaunchApp.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "win32_ProcessStartUP"

wmiQuery1="win32_process"

strCommand = "c:\Program Files\Windows NT\Accessories\wordpad.exe" 'application you want to

launch.

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objProcessSU = objWMIService.Get(wmiQuery)'Process Startup object

Set objProcess = objWMIService.Get(WmiQuery1) 'Get win32_process class

Set objConfig = objProcessSU.SpawnInstance_ 'Create instance processSU

objConfig.ShowWindow = 1 'normal window

objConfig.x = 5

objConfig.y = 5

errRTN = objProcess.Create(strCommand, Null, objConfig, procID)

SubERR

Sub subERR

If errRTN <> 0 Then

WScript.echo "An error occurred while launching " & strcommand &_

vbcrlf & "the error was: " & errRTN

End If

End sub

Working with the Registry
Only one class is used to represent the registry—Win32_Registry. This class is used to describe
the registry or to represent registry settings such as size. It is not used to read or modify regis
try values. If you want to work directly with the registry values, you need to use the strRegistry
provider. In the GetWin32_Registry.vbs script, I connect to the registry on the computer. The
Win32_Registry class does not have any methods—but it does have one writable property that
can be used to propose the size of the registry. In most instances, the ProposedSize property
and the MaximumSize property should be reported as the same unless you have recently
changed the proposed size.

Modifying the Registry Size

To modify the registry size or, more correctly, to change the proposed maximum size of the
registry, you assign a new value for the ProposedSize property and then use the Put_ method to
write it to the database. This looks like the following:

objItem.ProposedSize = 6

objItem.Put_

In the GetWin32_Registry.vbs script, these two lines are in the script, but they are commented
out—it is not up to me to modify the maximum size of the registry on your computer. Keep in

Chapter 11: Using Operating System Classes 235
mind that this is a proposed maximum size—and it takes effect only after a reboot, if allowed
by the operating system. This is one of the changes in Windows XP and Windows Server 2003
that was made to reduce the likelihood of misconfiguration—the value supplied here is only a
proposal. If the operating system detects an entry (such as one that is smaller than the current
registry size), it will write to the event log and politely ignore your suggestion.

GetWin32_Registry.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strPath = "'Microsoft Windows XP Professional|C:\WINDOWS|\Device\Harddisk0\Partition1'"

wmiQuery = "Win32_Registry.name=" & strPath

WScript.echo wmiquery

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

wscript.echo "Caption: " & objItem.Caption

wscript.echo "CurrentSize: " & objItem.CurrentSize

wscript.echo "Description: " & objItem.Description

wscript.echo "InstallDate: " & FunTime(objItem.InstallDate)

wscript.echo "MaximumSize: " & objItem.MaximumSize

wscript.echo "Name: " & objItem.Name

wscript.echo "ProposedSize: " & objItem.ProposedSize

wscript.echo "Status: " & objItem.Status

wscript.echo " "

' objItem.ProposedSize = 6

' objItem.Put_

WScript.echo "New proposal: " & objItem.ProposedSize

Function FunTime(wmiTime)

Dim objSWbemDateTime 'holds an swbemDateTime object. Used to translate Time

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value= wmiTime

FunTime = objSWbemDateTime.GetVarDate

End Function

Leveraging the Scheduler Job Classes
There are two scheduler job classes—well, maybe only one scheduler job class and then a local
time class. You need to use these two classes together—they are grouped together. Let’s look at
the Win32_LocalTime class first. The local time class inherits all 10 of its properties from the
Win32_CurrentTime abstract class. There are no instances of the Win32_CurrentTime class on
a computer, so to work with the properties, you use the Win32_LocalTime class, which has
exactly the same 10 properties as the Win32_CurrentTime class. The other class that inherits
from Win32_CurrentTime is the Win32_UTCTime class, which displays time values in Univer
sal Time Coordinate (UTC) format.

236 Part IV: Classes
What Is UTC?
Universal Time Coordinate (UTC) is a way of formatting time values to include time
zone information. It has effectively replaced Greenwich Mean Time (GMT) for many
computer-based activities. UTC uses time offset numbers in the range of +720 to -720. A
UTC time value with a time offset number of 0 is the same as GMT 0 or the current time
in Greenwich, England. Of course, 0 is easy. If you divide 720 by 24, you get 30. If you
know that Charlotte, North Carolina, in the United States is -5, and you multiply -5 by
30, you get -150 for the UTC offset. The problem is that an offset of -150 does not repre
sent the time in Charlotte but that of somewhere in the middle of the Atlantic Ocean.
Remember, the GMT values go to -12, not to -24. Therefore, you need to divide 720 by 12
to get 60. This makes UTC even easier to work with. The UTC for Charlotte, North Caro
lina, in the United States is -300.

Marking Time

Simply reporting the time values is rather boring and, frankly, is more complicated than using
the built-in Microsoft Visual Basic Scripting Edition (VBScript) functions NOW and DateTime.
The GetWin32_LocalTime.vbs script on the accompanying CD reports the Win32_LocalTime
properties. One of the more interesting tasks you can perform using the Win32_LocalTime
class is to create a custom timer—an alarm clock. You can use an event-driven script, and when
the instance modification event that matches the values you specify for the Win32_LocalTime
properties occurs, you trigger the event. The event, of course, can be anything you desire. In
the MonitorTime.vbs script, you create an instance modification event script that simply
prints out the current date and time, with a message that the event occurred. As you query
from InstanceModificationEvent class which is an intrinsic provider, we do not need to specify
a polling interval and therefore we do not use the WITHIN operator as is done with non-pro
vider scripts. In this script, you use three variables to hold the hour, minute, and seconds
properties—this becomes the time at which you want the event to trigger. After you make a
connection into WMI, use the ExecNotificationQuery method of the SWbemServices object and
put the script into a loop while you wait for the next event to occur.

In the MonitorTime.vbs script, I supply three properties for Win32_LocalTime. If I did not sup-
ply the property for the second property, the event would fire 60 times during the minute. As
this script currently stands, it will fire an event once every day, each day of the year, at 12:55.
The hour property is supplied in the 24-hour clock format—meaning the 12:55 event will
occur 5 minutes before 1:00 in the afternoon. If you want to try out the MonitorTime.vbs
script, modify the intHour and the intMinute values to a time that is a minute or two in the
future from the current time. An example of this would be intHour = “8” for 8:00 AM, and
intHour=“20” for 8:00 PM. If you want the script to trigger at 8:15 in the morning, then it
would be intHour=“8” intMinute =“15”. Because this is an event-driven script and it uses Do
Loop, it will run forever. You need to manually stop the script once the event fires.

Chapter 11: Using Operating System Classes 237
MonitorTime.vbs

strComputer = "." [

objTGT = "'Win32_LocalTime'" [

wmiNS = "\root\cimv2" [

intHour = "12" [

intMinute = "55" [

intSecond = "0"[

wmiQuery = "SELECT * FROM __InstanceModificationEvent WHERE " _[

& "TargetInstance ISA " & objTGT & "AND TargetInstance.Hour="&intHour _

& "And TargetInstance.Minute = "&intMinute _

& " And targetInstance.second="&intSecond

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS) [

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery) [

Do [

Set objItem = colItems.NextEvent

Wscript.Echo "Event triggered at " & now

Loop

Working with the Job Scheduler

The Win32_ScheduledJob class is used to interact with the AT command job scheduler on com
puters that run Microsoft Windows NT 4 Service Pack 4 or later. It does not work if the com
puter runs Microsoft Windows 95 or Windows 98. Two task schedulers run on Windows
2000 and later: the command-line scheduler AT, and the Scheduled Tasks Wizard. These two
separate job schedulers do not communicate with one another. Win32_ScheduledJob talks
only to AT and knows only about AT.

The Scheduled Tasks Wizard does know about AT and can display information about jobs
created by Win32_ScheduledJob. Figure 11-2 shows five jobs in the Scheduled Tasks folder.
Four of these jobs were scheduled by the ScheduleNoteToRun.vbs script. One of the sched
uled jobs shown was created by the Scheduled Tasks Wizard. When you look at the jobs in
the Scheduled Tasks folder, you cannot tell where the jobs came from (except that three of the
jobs are named with the default AT prefix).

Figure 11-2 Scheduled Tasks folder displaying the status of scheduled jobs

If you were to run the Win32_ScheduledJob.vbs script (which is located on the accompanying
CD), it would not report the job created by the Scheduled Tasks Wizard. It would report all

238 Part IV: Classes
the other scheduled jobs, including the one you renamed. In previous versions of the Win
dows operating system, it was possible to alter a job created by using the AT command in the
Scheduled Tasks Wizard. If you were to do this, it would break the jobs that had been sched
uled by AT. As shown in Figure 11-3, these jobs are now in read-only mode. You can view the
settings, but you cannot make any changes to the jobs unless you do it by using a script or the
AT command interface.

Figure 11-3 Read-only status of AT jobs

ScheduleNoteToRun.vbs

strComputer = "." [

wmiNS = "\root\cimv2" [

wmiQuery = "win32_ScheduledJob" [

objJob = "notepad.exe" [

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)[

Set objitem = objWMIService.Get(wmiQuery) [

errRTN = objitem.Create _ [

(objJob, "********075200.000000-300", True , 32, , , JobID)

If errRTN <> 0 Then[

Wscript.Echo " error: " & errRTN[

Else[

WScript.echo "New Job created. " & objJob & vbcrlf & " job id: " & jobID[

End if[

Using the Security Classes
There are 22 security-related classes. These classes are listed in Table E-14 in Appendix E.
Security classes are often used in tandem because of the way the Windows security model

Chapter 11: Using Operating System Classes 239
works. (If you would like to find more information about the Windows Security model, go to
http://www.microsoft.com/security.) When you retrieve the security settings on a folder, WMI
returns several objects, each containing information that must be parsed separately. Access
masks (read, write, etc.)—what most people think of when considering security on a folder—
are but a very small part of the overall security model. We explore these settings when we
examine the Win32_LogicalFileSecuritySetting class later. In addition to access control masks,
you can work with trustees, security identifiers (SIDs), and other objects separately or in con-
junction with other security objects.

Security in most operating systems is complicated, as it is in the Windows world—but luckily
you have WMI to assist you. We cover some of the nuances of using security classes in Chap
ter 13, but for now, we look at an example of using the Win32_LogicalFileSecuritySetting class.

Reading Security on a Folder

In the GetSecurityDescriptorOnFolder.vbs script, I first specify the value for the variable
strFolder—in this case, I use the cimv2Scripts folder, but it can be any folder you can access.
Remember to include the double backslash that is used to separate parts of folder names in
WMI. Next, I build the query and assign it to the wmiQuery variable. I concatenate the
Win32_LogicalFileSecuritySetting with strFolder. Then I make the connection into WMI and go
into the SubGetDacl subroutine. Once in the subroutine, I execute the query by using the Get
method, and then use the GetSecurityDescriptor method to retrieve the security descriptor
from the folder. I use the variable wmiSecurityDescriptor to hold the security descriptor repre
sentation that is returned from the GetSecurityDescriptor method. It is not a real object; rather,
the format that returns is based on the Win32_SecurityDescriptor abstract class, which is used
to represent the security structure of the folder. The discretionary access control list (DACL) is
returned as an array of DACLs. I then walk through this array and retrieve the access mask,
trustee information, and the SIDs associated with these entries. As with other methods in
WMI, you have to capture the return code or else the call to the method fails.

Quick Check

Q: When you read the security descriptor for a file or a folder using the
Win32_LogicalFileSecuritySetting class, how are access control masks retrieved?

A: When you read the security descriptor for a file or a folder using the
Win32_LogicalFileSecuritySetting class, the access control masks are retrieved as a
Win32_Ace array.

Q: When you use Win32_ScheduledJob to create a scheduled job, how is the time of the
job determined?

A: When you use Win32_ScheduledJob to create a scheduled job, the time of the job is deter-
mined by using the UTC time format.

240 Part IV: Classes
GetSecurityDescriptorOnFolder.vbs

strComputer = "."

strFolder = "'c:\\CIMv2Scripts'"

wmiQuery = "win32_LogicalFileSecuritySetting=" & strFolder

Set objWMIService = GetObject ("winmgmts:\\" & strComputer)

subGetDacl

'### subs are below ###

Sub subGetDacl

set objItem = objWMIService.Get(wmiQuery) 'use get method to get the folder

errRTN = objItem.GetSecurityDescriptor(wmiSecurityDescriptor)

subErr 'check for errors in retrieving the SID.

colDacl = wmiSecurityDescriptor.DACL ' Retrieve DACL

For each intAce in colDacl

wscript.echo "Access Mask: " & strAccessMask(intAce.AccessMask)

wscript.echo "ACE Type: " & intAce.AceType

Set intTrustee = intAce.Trustee ' Get Win32_Trustee object from ACE object

wscript.echo "Trustee Domain: " & intTrustee.Domain

wscript.echo "Trustee Name: " & intTrustee.Name

intSID = intTrustee.SID ' Get SID as array from Trustee object

For i = 0 To UBound(intSID) - 1

strsid = strsid & intSID(i) & ","

Next

strsid = strsid & intSID(i)

wscript.echo "Trustee SID: {" & strsid & "}" & vbcrlf

Next

End sub

Sub subErr

If Err <> 0 Then

WScript.Echo "GetSecurityDescriptor failed" & vbcrlf & Err.Number & vbcrlf _

& Err.Description

WScript.Quit

Else

WScript.Echo "GetSecurityDescriptor succeeded"

End If

End Sub

Function strAccessMask(inMask)

Dim strPerm

If inMask AND 1 Then strPerm = strPerm & "File List Dir, "

If inMask AND 2 Then strPerm = strPerm & "File Add File, "

If inMask AND 4 Then strPerm = strPerm & "File Add Sub, "

If inMask AND 8 Then strPerm = strPerm & "File Read Ext Attr, "

If inMask AND 16 Then strPerm = strPerm & "File Write Ext Attr, "

If inMask AND 32 Then strPerm = strPerm & "File Traverse, "

If inMask AND 64 Then strPerm = strPerm & "File Delete Child, "

If inMask AND 128 Then strPerm = strPerm & "File Read Attrrib, "

If inMask AND 256 Then strPerm = strPerm & "File Write Attrib, "

If inMask AND 65536 Then strPerm = strPerm & "Delete, "

If inMask AND 131072 Then strPerm = strPerm & "Read Control, "

If inMask AND 262144 Then strPerm = strPerm & "Write DAC, "

If inMask AND 524288 Then strPerm = strPerm & "Write Owner, "

Chapter 11: Using Operating System Classes 241
If inMask AND 1048576 Then strPerm = strPerm & "Synchronize, "

strAccessMask = strPerm

End Function

Using the Service Classes
Two classes are in this group: Win32_BaseService and Win32_Service. Each class contains 10
methods. Win32_BaseService has 22 properties, and Win32_Service has 25 properties. In 22
cases, the properties are identical; three unique properties are defined in Win32_Service:
Checkpoint, ProcessID, and WaitHint. This makes sense because Win32_BaseService is used to
describe a service that starts when the Windows operating system starts. These are very low-
level types of services that do not belong to any particular user; rather, they are owned by the
system. All of these base services are controlled by the Service Control Manager and can be
found in the registry. This registry-based database of services is also owned and controlled by
the Service Control Manager. There might be times when a network administrator or consult-
ant is called upon to modify the start order or to change some parameter for one of these sys
tem base services, but it is extremely rare. In the old days, this entailed hacking the registry; in
the 21st century, you use WMI.

Creating a Service

In the CreateAService.vbs script, I use the Win32_Service class to install Notepad as a service.
There are several problems with this approach—not the least of which is that Notepad will not
run as a service. But because I do not have an uninstalled service lying around for us to prac
tice with, I use Notepad. If the script runs without errors, it was successful. Another problem
with this approach is that when you try to run as a service an application that is not designed
as a service, it raises security concerns. This is one reason for the disappearance of the
Resource Kit utility called Srvany.exe—it enabled you to treat an application as a service. From
a security perspective, a service must be designed as a service from the ground up, and specific
coding recommendations exist for doing this.

In the CreateAService.vbs script, I first use Win32_Service, and then I call the Create method to
create a new service. The Create method from Win32_Service can take up to a dozen parame
ters, some of which are integers; others are strings, Booleans, and arrays. To keep the parame
ters straight, I tried to follow the Hungarian notation when I created the variable names.
Additionally, by using variables for each parameter, I understand better what the actual Create
command is trying to do, which can greatly facilitate troubleshooting. If the command errors
out, it will more than likely simply say “Type Mismatch” and point to the line where you
include the Create command. This doesn’t help you identify the real error because you might
need to examine up to a dozen parameters. This method requires you to capture the return
code; if you do not, the error displayed might warn that you cannot use parentheses when
calling a subroutine. This error is shown in Figure 11-4.

242 Part IV: Classes
Figure 11-4 An error message that has nothing to do with a subroutine but that is caused by not
capturing the return code

To avoid the bogus error, echo out the return code from the operation. You are, of course,
looking for a zero here. Any number other than zero indicates an error. The errors you might
see are many and vary from “The Service Already Exists” to “Access Denied.” A complete list
ing of the return codes are in the Platform software development kit (SDK).

CreateAService.vbs

strComputer = "Acapulco"

wmiNS = "\root\cimv2"

wmiQuery = "win32_service"

strName = "notepad"

strDisplay = "notepad"

strPath="c:\windows\System32\notepad.exe"

intErr = 0 'do not notify user if error

strStartMode = "Manual"

bolDesk = False

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

errRTN=objItem.create(strName,strDisplay,strPath,,intErr,strStartMode,bolDesk)

WScript.Echo(errRTN)

Deleting a Service

Because you created a bogus service, it would be nice to be able to delete the silly thing. This
is much easier than creating the service. You use the Delete method of the Win32_Service class.
The only trick to this operation is that you have to connect directly to the service by using the
Get method. You supply the Name property because it is the key property for this class. You
need to know the name of the service you are trying to delete, which is no problem because it
is easily found in the Services console. As in the CreateAService.vbs script, you must capture
the return code from the operation. So, when you run the DeleteAService.vbs script, you
delete the Notepad service, and your computer no longer has a Notepad service.

DeleteAService.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strServiceName = "'notepad'"

wmiQuery = "win32_service.name=" & strServiceName

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Chapter 11: Using Operating System Classes 243
Set objItem = objWMIService.get(wmiQuery)

errRTN=objItem.delete("notepad")

WScript.Echo(errRTN)

Working with Shares
There are 11 share-related operating system classes. Eight of these are association classes, and
only three are instance classes. Following are the three instance classes:

■ Win32_Share

■ Win32_ServerConnection

■ Win32_ServerSession

Each of these classes is interesting and can provide some valuable information to the network
administrator who is trying to get a handle on hundreds of shares that can be created on a
workstation or a server. As you have seen in recent years, controlling shares is also a big secu
rity concern. Two of the classes, Win32_ServerConnection and Win32_ServerSession, provide
very similar information. The difference is that Win32_ServerConnection provides you with the
name of a share to which the connection is made and it gives you the number of users and the
number of files open on the connection. The Win32_ServerSession class does not provide this
information.

Reporting Connections to the Servers

In the Win32_ServerConnection.vbs script, I report on connections that are made to the
server. The Win32_ServerConnection class can provide information on the number of connec
tions, the shares in use, the users who are making the connection, and even the operating sys
tem the client machine is using to make the connection.

I begin by making a connection into WMI by using the moniker. I then use the ExecQuery
method of the SWbemServices object to bring back every instance of a server session con
nected to the machine. I then report the values of each property by using Wscript.Echo.

Win32_ServerConnection.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_ServerSession"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "ActiveTime: " & objItem.ActiveTime

wscript.echo "Caption: " & objItem.Caption

wscript.echo "ClientType: " & objItem.ClientType

wscript.echo "ComputerName: " & objItem.ComputerName

wscript.echo "Description: " & objItem.Description

244 Part IV: Classes
wscript.echo "IdleTime: " & objItem.IdleTime

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "Name: " & objItem.Name

wscript.echo "ResourcesOpened: " & objItem.ResourcesOpened

wscript.echo "SessionType: " & objItem.SessionType

wscript.echo "Status: " & objItem.Status

wscript.echo "TransportName: " & objItem.TransportName

wscript.echo "UserName: " & objItem.UserName

wscript.echo " "

next

Starting with the Start Menu
The Start menu group of classes contains four instance classes and three association classes.
The Win32_ProgramGroup class, one of the instance classes, is deprecated and is not recom
mended for use by scripters. The Win32_LogicalProgramGroup is designed to take the place of
the Win32_ProgramGroup class. An overview of the classes in this category is in Appendix E.
The instance classes in this category are as follows:

■ Win32_LogicalProgramGroupItem

■ Win32_ProgramGroupOrItem

■ Win32_LogicalProgramGroup

■ Win32_ProgramGroup (deprecated)

In the Win32_LogicalProgramGroup.vbs script, I report on the program groups installed on
the computer that are assigned to the All Users user. These are program groups that are avail-
able to any user who logs on to the computer. Controlling such program group assignments
is a big concern of administrators who are working with Terminal Services or workstations
with shared users. The InstallDate property is reported in a UTC date format; use the FunTime
function to translate it into a more palatable format.

Win32_LogicalProgramGroup.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_LogicalProgramGroup " _

& "where username = 'All Users'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Description: " & objItem.Description

wscript.echo "GroupName: " & objItem.GroupName

wscript.echo "InstallDate: " & funTime(objItem.InstallDate)

wscript.echo "Name: " & objItem.Name

wscript.echo "Status: " & objItem.Status

wscript.echo "UserName: " & objItem.UserName & vbcrlf

Next

Chapter 11: Using Operating System Classes 245
Function FunTime(wmiTime)

Dim objSWbemDateTime 'holds an swbemDateTime object.

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value= wmiTime

FunTime = objSWbemDateTime.GetVarDate

End Function

Monitoring Storage
The WMI storage group of classes continues to evolve as more classes are added. Eleven
classes are in this category, most dealing with shadow storage or user quotas. One new and
exciting class is available in Windows Server 2003: the Win32_Volume class. It is a mega class
that has 42 properties and 9 methods. The methods are not lame methods, either; they are
awesome, exciting methods such as Defrag, Format, Chkdsk, and AddMount. The Windows
storage team has done an awesome job by adding these methods, enabling the network
administrator to perform nearly every conceivable kind of storage management task from a
WMI script.

Using the Win32_Volume Methods

The DefragAnalysis method of the Win32_Volume class is a very useful class from a trouble-
shooting and maintenance perspective. The only bad thing about this class is that it is avail-
able only in Windows Server 2003 and later. It is not available in Windows XP. Using the
method is a little strange. Keep in mind the DefragAnalysis method requires two output vari
ables. The first output variable is used to contain the evaluation of the drive condition—does
the disk drive need to be defragmented? The second output variable is used to hold the details
of the defrag analysis report. In reality, what is contained in the second output variable is not
a mere report; rather, it is a Win32_DefragAnalysis object. You use the properties of the
Win32_DefragAnalysis class to retrieve the report results. The NeedADefrag.vbs script illus
trates how to call the DefragAnalysis method.

NeedADefrag.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_Volume where DriveType ='3'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo "Beginning analysis of: " & objItem.DriveLetter

objItem.DefragAnalysis defrag,objitem1

SubEvalDefrag

Next

Sub SubEvalDefrag

If defrag = 0 then

WScript.echo "this disk does not need defragmentation"

246 Part IV: Classes
Else

WScript.echo defrag

End if

Wscript.Echo "AverageFileSize: " & objitem1.AverageFileSize

Wscript.Echo "FilePercentFragmentation: " & _ objitem1.FilePercentFragmentation

Wscript.Echo "FragmentedFolders: " & objitem1.FragmentedFolders

Wscript.Echo "TotalExcessFragments: " & objitem1.TotalExcessFragments

Wscript.Echo "MFTPercentInUse: " & objitem1.MFTPercentInUse

Wscript.Echo "TotalPageFileFragments: " & _ objitem1.TotalPageFileFragments

End Sub

Understanding User Classes
For many administrators, a surprising group of WMI classes is the user classes group. Using
the power of WMI, you can retrieve reams of extremely valuable information about users and
their activities on systems.

Working with Logon Sessions

In the Win32_LogonSession.vbs script, I return information regarding the authentication
package used to authenticate the user, the type of logon, and the time in which the authenti
cation took place. Because the time is returned in UTC format, I use the FunTime function to
translate the time into a more readable format.

Win32_LogonSession.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_LogonSession"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "AuthenticationPackage: " & objItem.AuthenticationPackage

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Description: " & objItem.Description

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "LogonId: " & objItem.LogonId

wscript.echo "LogonType: " & objItem.LogonType

wscript.echo "Name: " & objItem.Name

wscript.echo "StartTime: " & funTime(objItem.StartTime)

wscript.echo "Status: " & objItem.Status

wscript.echo " "

Next

Function FunTime(wmiTime)

Dim objSWbemDateTime 'holds an SWbemDateTime object. Used to translate Time

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value= wmiTime

FunTime = objSWbemDateTime.GetVarDate

End Function

Chapter 11: Using Operating System Classes 247
Working with User Accounts

The Win32_UserAccount class has a number of properties that can help you. This class can
report whether an account is locked out, whether it is a local account or a domain account,
and even whether the password is set to expire. As an added bonus, you can also retrieve the
SID for a user. The Win32_UserAccount.vbs script demonstrates how to use this class.

Win32_UserAccount.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_UserAccount"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

wscript.echo "AccountType: " & objItem.AccountType

wscript.echo "Caption: " & objItem.Caption

wscript.echo "Description: " & objItem.Description

wscript.echo "Disabled: " & objItem.Disabled

wscript.echo "Domain: " & objItem.Domain

wscript.echo "FullName: " & objItem.FullName

wscript.echo "InstallDate: " & objItem.InstallDate

wscript.echo "LocalAccount: " & objItem.LocalAccount

wscript.echo "Lockout: " & objItem.Lockout

wscript.echo "Name: " & objItem.Name

wscript.echo "PasswordChangeable: " & objItem.PasswordChangeable

wscript.echo "PasswordExpires: " & objItem.PasswordExpires

wscript.echo "PasswordRequired: " & objItem.PasswordRequired

wscript.echo "SID: " & objItem.SID

wscript.echo "SIDType: " & objItem.SIDType

wscript.echo "Status: " & objItem.Status

wscript.echo " "

next

Leveraging the Windows NT Event Log
Five operating system classes are used to work with the event log. Two of the classes are
instance classes: Win32_NTEventLogFile and Win32_NTLogEvent. I admit, the class names are
a little confusing. The way I keep them straight is to remember that the word file in the class
name Win32_NTEventLogFile refers to the physical log file used for the event log, not the
events stored in the log. The script Win32_NTEventLogFile.vbs, found in the Chapter11
folder on the companion CD, reports all the properties of the Win32_NTEventLogFile class.
Let’s look at the methods of this class.

Backing Up Event Log Files

The Win32_NTEventLogFile class has 16 methods. This isn’t as exciting as it might at first
sound because the class inherits CIM_DataFile, and the 14 methods that come from there are
more generic file methods (such as Copy) and are not specifically designed for working with
event logs. However, two of the methods, ClearEventLog and BackupEventLog, are very useful.

248 Part IV: Classes
Many administrators prefer to write scripts to perform their event log maintenance because
the scripts can be more flexible than are the settings provided by using Event Viewer.

In the BackupEventLogCreateFileName.vbs script, I use the BackupEventLog method to back
up the event log. If the backup is successful, the log file is cleared. In the process, I create a file
name for the event log. The particular log file I am working with in the script is the application
log, but you can perform the same operation on the system log, security log, or whichever
event log file you happen to have on your computer. The ClearEventLog and BackupEventLog
methods have been around since Windows NT 4 Service Pack 4.

In the wmiQuery string, you specify the name of the log file you want to back up. The strLog
variable contains the actual name of the log. In this case, I specify the LogFileName property as
application. You need to enclose this name in single quotes when it is passed to the query.

When you call the BackupEventLog method, you need to tell it the path and the name of the file
that will be created for the backup. To do this, use two variables that are concatenated: strLog-
Folder and strFile. Do this to create the file name dynamically. Assign the value of the folder in
the reference section of the script, but the strFile variable will obtain its value in the subroutine
that creates the file name.

In the SubCreateFileName subroutine, I make a WMI query to obtain the domain name; I
obtain this property from the Win32_ComputerSystem class. I also obtain the computer name,
but because Name is the key value and, therefore, automatically selected, I don’t need to select
name, domain in the Select statement. I glue these two properties together, pick up the log file
name from the value of strLog, obtain the date, replace back slashes with underscores, put it all
together, and this becomes the file name. You are allowed to perform this operation once a
day. You could add additional logic to delete the log if you needed to back up twice a day or
append a letter to the end indicating sequence of operation. You could use the FileExists
method from the FileSystemObject to do this.

If the backup of the event log is successful, you clear the event log by using the ClearEventLog
method.

BackupEventLogCreateFileName.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strLOG = "'application'"

strMSG = " The Application event log could not be backed up."

wmiQuery = "Select * from win32_NTEventLogFile where LogFileName=" & strLOG

strLogFolder = "C:\fso\"

subCreateFileName

Set objWMIService = GetObject("winmgmts:" _

& "{impersonationLevel=impersonate,(Backup)}!\\" & _

strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Chapter 11: Using Operating System Classes 249
errBackupLog = objItem.BackupEventLog(strLogFolder & strFile)

If errBackupLog <> 0 Then

Wscript.Echo errBackupLog & strMSG

Else

objItem.ClearEventLog()

WScript.echo "event log was backed up."

End If

Next

Sub subCreateFileName

dim wmiQuery ' recycled variable. Same name outside.

Dim strDate ' only used in sub

Dim strName ' only used in sub

wmiQuery = "select domain from win32_computerSystem"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.execQuery(wmiQuery)

For Each objItem in colItems

strName = objItem.name

strName = strName & "." & objItem.domain

Next

strDate = Replace (cstr(Date), "/", "_")

strLog = Replace (strLOG, "'", "_")

strFile = strName & strLog & strDate & ".evt"

End sub

Easing Windows Product Activation
A new class introduced in Windows XP is the Win32_WindowsProductActivation class. This
class is very useful to help network administrators manage the deployment of Windows XP or
Windows Server 2003. Windows XP and newer operating systems must be activated after
installing them. Although this is not a problem for large organizations that have Select License
agreements with Microsoft, because of the time and labor involved in completing the manual
activation process, it can be a real problem for smaller customers who need to activate 10 or
15 copies of Windows XP.

If you need to activate Microsoft products on a number of computers, you can call the Activate-
Online method or the ActivateOffline method. ActivateOnline is the easiest one to use, and it
could be included as part of a setup script. The computer must be connected to the Internet
to exchange the information with the Microsoft Clearinghouse license server. If you need to
configure the Internet settings, you could use the Win32_ProxyClass, which has the SetProxy-
Setting method.

Managing Windows product activation is not just a small-business problem—enterprise cus
tomers often have rogue departments that set up their own servers using retail software. To
detect this, network administrators could use the DisplayWPAStatus.vbs script to locate serv
ers that are about to crash as a result of inactivated licenses.

250 Part IV: Classes
DisplayWPAStatus.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_WindowsProductActivation"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo "ActivationRequired: " & objItem.ActivationRequired

Wscript.Echo "IsNotificationOn: " & objItem.IsNotificationOn

Wscript.Echo "ProductID: " & objItem.ProductID

Wscript.Echo "RemainingEvaluationPeriod: " & objItem.RemainingEvaluationPeriod

Wscript.Echo "RemainingGracePeriod: " & objItem.RemainingGracePeriod

Wscript.Echo "ServerName: " & objItem.ServerName

Next

Summary
In this chapter, we looked at the operating system classes. Many classes and groups of classes
can have immediate impact on the productivity of network administrators and consultants
working in the field. The operating system WMI classes enable you to perform monitoring,
logging, reporting, and various configuration activities by using scripts.

Quiz Yourself
Q: What is the primary consideration when you use WMI to create a service from an
application that is not configured to run as a service?

A: The primary consideration when you use WMI to create a service from an application
not configured to run as a service, besides possible service issues or stability issues, is
security.

Q: What must you remember when you use the Win32_Volume class to work with
disk drives through WMI?

A: When you use Win32_Volume to work with disk drives, remember that the class exists
only in Windows Server 2003.

Q: If you use Win32_Registry to set a new maximum size for the registry and a script
reports that the proposed size and the maximum size of the registry are different
numbers, what could be one reason for the difference?

A: If you use Win32_Registry to set a new maximum size for the registry and the pro-
posed size and the maximum size values are different, the most likely reason for this dif
ference is that you did not reboot the computer subsequent to making the changes.

Chapter 11: Using Operating System Classes 251
On Your Own

Lab 22 Monitoring the Shutdown of Applications

In this lab, you will use the Win32_ProcessStopTrace operating system event class to monitor
the shutdown of applications. You will have two processes running on your computer, and
when one of the processes stops, you want to capture the name and process ID of the process.
When the second process stops, you will once again capture this information.

1. Open the WmiTemplate.vbs script and save it as StudentLab22.vbs.

2.	 Modify the wmiQuery to select everything from the Win32_ProcessStopTrace class. The
line looks like the following:

wmiQuery = "SELECT * FROM Win32_ProcessStopTrace"

3.	 Modify the Set colItems line to perform an ExecNotificationQuery. The line looks like the
following:

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

4.	 Delete the For Each Next section and all the enclosed Wscript.Echo commands that were
in the original template.

5.	 Because the ExecNotificationQuery might take a little while to actually work, you need to
use Wscript.Echo to print out an appropriate message to inform the user that the script is
waiting for a particular event. I added a line like the following under the Set colItems line:

WScript.Echo "Waiting for process to stop ..."

6.	 Now put the script into a loop as it waits for the event to transpire. To do this, use the Do
Loop command. It will be blank right now. Place Do under the Wscript.Echo command
you added in step 5, add in a couple of blank lines, and type Loop on a separate line. It
looks something like this when you are done:

DO

Loop

7.	 Just below the Do command, invoke your subscription to the event. Do this by using the
NextEvent command. Assign what comes back from using NextEvent to the variable
objItem. The completed line looks like the following:

Set objItem = colItems.NextEvent

8.	 If an event occurs, you want to print out the ProcessName and the ProcessID. Do this by
using Wscript.Echo. The completed Do Loop section now looks like the following:

Do

Set objItem = colItems.NextEvent

Wscript.Echo "StoppedProcess Name: " & objItem.ProcessName

Wscript.Echo "Process ID: " & objItem.ProcessId

Loop

252 Part IV: Classes
9.	 Save and run the script. You should see the message, “Waiting for process to stop…” in
the output.

10. Run the LaunchMultipleProcesses.vbs script (in the Lab22 folder on the accompanying
CD). This script starts Notepad and Calculator. Wait for a few seconds.

11. Open Task Manager, and find the Notepad.exe process and the Calc.exe process. Write
down the process ID of the two processes you just started.

12. Kill Notepad. You should see a message that lists the process ID and the name of the
process (Notepad) that you just killed.

13. Kill Calculator. You should see a message that lists the process ID and the name of the
process (Calc) that you just killed.

14. If all goes smoothly, you have completed the lab. If you encounter errors, you must do
the optional troubleshooting lab (just kidding). Compare your script to the
Lab22Solution.vbs script in the Lab22 folder.

Lab 23 Performing a Controlled Shutdown of Apps

In this lab, you will expand upon the script you developed in Lab 22. Instead of simply report
ing the process ID (PID) of an application that is no longer running (really lame, I will admit),
this script will shut down an additional application. The idea of this lab is that in situations in
which you have an application with multiple dependent processes, you can control the shut-
down of the entire application by killing off the dependent processes in the correct order. For
this lab, you will use Notepad and Calculator.

1.	 Open either your solution from Lab 22 or the Lab23Starter.vbs script. Whichever script
you choose to use, make sure you save it as StudentLab23.vbs.

2.	 Create a subroutine called SubKillProcess. To do this, use the Sub and End Sub com
mands. It looks like the following:

Sub subKillProcess

End Sub

3.	 Under the Sub SubKillProcess line, declare three variables: wmiQuery1, objItem1, and
colItems1.

4.	 You need to define wmiQuery1. Make it equal to selecting the Name property from the
Win32_Process class. But do this only if the name is equal to Calc.exe. The query looks
like the following:

wmiQuery1 = "select name from win32_Process where name='calc.exe'"

5.	 Use the variable colItems1 to hold what comes back from executing the wmiQuery1. This
line of code looks like the following:

Set colItems1 = objWMIService.execQuery(wmiQuery1)

Chapter 11: Using Operating System Classes 253
6.	 To walk through the items in colItems1, use a For Each Next loop. Inside this loop, call the
Terminate method of the Win32_Process class. The completed loop looks like the following:

For Each objItem1 in colItems1

objItem1.terminate

Next

7. Save the script.

8.	 In the Do loop, just under the Wscript.Echo "Process ID" line, call the SubKillProcess sub-
routine. You do this simply by typing in the name of the subroutine: SubKillProcess.

9. Save and run your script.

10. Run the LaunchMultipleProcesses.vbs script. Wait a few seconds. The LaunchMulti
pleProcesses.vbs script will start Notepad and Calculator for you.

11. Now kill Notepad. You should see a confirmation message print the name Notepad and
the process ID associated with Notepad. You should also see Calculator go away and see
the printout for its process name and process ID as well.

This completes Lab 23.

Chapter 12

Using the Performance Counter
Classes

In Chapter 11, we examined the operating system classes. We looked at several methods that
enable us to make some useful configuration changes on our systems. In this chapter, we look
at the performance counter classes. Network administrators love to use System Monitor; it
gives them real-time insight into the performance of servers. System Monitor can quickly pin-
point trouble spots and offer insights for both hardware upgrades and system configuration
changes. However much as administrators admit that they love using the tool, most lament
that they do not have time to use it as much as they would like. Indeed, it seems that most
administrators use System Monitor only when they are having problems. As an alternative, the
Windows Management Instrumentation (WMI) performance counter classes enable harried
administrators to retrieve real-time performance information proactively. In fact, when you
incorporate a few well-crafted scripts, you can create a pretty sophisticated monitoring appli�
cation.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of network administration

■ The basics of performance monitoring

■ The basics of performing WMI queries

After you complete this chapter, you will be familiar with the following concepts:

■ The difference between raw and cooked counters

■ How to write WMI scripts that use performance counter classes

■ How to refresh information retrieved from a performance counter class

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter12 folder.
255

256 Part IV: Classes
Using Formatted Performance Counter Classes
The performance counter WMI classes enable you to access performance information from
within a script. By using this information, you can assess the health of your server. This infor�
mation can also serve to feed into the decision portion of your script, enabling you to take
either corrective or preventive action based on the actual statistical performance of the com�
puter. The formatted performance counter classes are also called cooked performance counter
classes and are listed in Appendix F, Table F-1. The big advantage of using the formatted per�
formance counters is that many of the calculations are already made for you.

Understanding Performance Counter Classes

Two performance counter providers reside on computers running Microsoft Windows Server
2003: the cooked counter provider, and the performance counter provider. The cooked pro�
vider supplies WMI classes that calculate formatted data based on various sampling intervals
that are used to supply the raw data to the class. The formatted data is then supplied to the
class. This data should be the same data as is displayed in the System Monitor utility because
the same formulas are used in the computations.

The classes are generated in the WMI repository when the system starts up by reading the per�
formance libraries in the registry. The AutoDiscovery/AutoPurge (ADAP) process is responsi�
ble for adding classes to the repository. This process transfers performance counter objects
into WMI performance classes in the WMI repository. The properties of these classes are used
to represent the counters you would see in System Monitor. The ADAP process compares the
list of counter objects found in the performance libraries to the list of counter classes in WMI.
If an object is not represented in WMI, it is added. The process works in reverse as well: if a
performance library has been uninstalled, the ADAP process will remove all the WMI perfor�
mance classes derived from the registered performance libraries.

Obtaining Current Bandwidth

In Figure 12-1, you can see System Monitor reporting the current bandwidth of two network
adapters. These values were selected from the Network Interface performance object. On my
computer, I chose current bandwidth from all instances and obtained the results shown in
Figure 12-1.

Chapter 12: Using the Performance Counter Classes 257
Figure 12-1 Checking the current bandwidth of a network interface using System Monitor

The two values reported in System Monitor correspond exactly to the output from the Cur�
rentBandwidth.vbs script. In the script, I select a single property—CurrentBandwidth—from the
Win32_PerfFormattedData_Tcpip_NetworkInterface class. I build up a variable, and then print
the results. This gives me a real-time representation of the current bandwidth of the network
interface—exactly the same information retrieved from System Monitor because of the ADAP
process and the fact that the information comes from the same location.

CurrentBandwidth.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select CurrentBandwidth from _ Win32_PerfFormattedData_Tcpip_NetworkInterface"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

strMSG = strMSG & vbcrlf & "Name: " & objItem.Name & vbcrlf & _

vbtab & "CurrentBandwidth: " & objItem.CurrentBandwidth

Next

WScript.Echo strMSG

Quick Check

Q: What are the two kinds of performance counter classes available in WMI?

A: The two kinds of performance counter classes available in WMI are cooked and raw
counters.

Q: What is the difference between a cooked counter class and a raw counter class?

A: The difference between a cooked counter class and a raw counter class is that a cooked
counter class generally performs calculations for you, whereas the raw counter class does
not. For instance, a cooked counter class can calculate the percentage of processor utiliza�
tion by taking several measurements of the processor utilization, and then averaging them
for you.

258 Part IV: Classes
Refreshing the Data
When you perform a query into the performance-monitor counters, you might find illuminat�
ing results, but you cannot trend the data. If you loop through the counters without refreshing
the data, you simply repeat the presentation of the information over and over again—certainly
not a very useful operation. However, if you can go back to WMI and reload the data, you will
have updated data to present to your script.

For example, if I want the capability of refreshing the WMI data available to my script, I must
create a refresher object. The refresher object is called SWbemRefresher, and basically it is a
container into which you can put data that needs to be refreshed. You can add multiple items
to a refresher object. Individual items added to the refresher object are represented by an
instance of SWbemRefreshableItem. Because this is the case, you can treat the entire object as a
collection and can iterate through it if you choose. The refresher object will obtain updated
data when you call the Refresh method. The tricky part of adding an item to the refresher is
that you must specify two parameters: the connection that was made into WMI and the query
that you want to use. This refresher object will take charge of refreshing the WMI query; addi�
tionally, the refresher object will execute the query for you.

Using the Refresher Object

In the Refresh_PerfOS_Objects.vbs script, you use a refresher object to update the informa�
tion reported from the class. The first step is to create the refresher object. To do this, use the
Set command to capture the object that comes back from using the CreateObject command to
create the SWbemRefresher object. This line of code looks like the following:

Set objRefresher = CreateObject("WbemScripting.SWbemRefresher")

Once you have created the refresher object, you must add a query to the object that will be
refreshed. You use the AddEnum method to tie the query and the WMI connection together
using the refresher object. In the Refresh_PerfOS_Objects.vbs script, the line that adds the
query and the WMI connection to the refresher object looks like the following:

Set objRefreshItem = objRefresher.AddEnum(objWMIService,wmiQuery)

After you use the AddEnum method, the last thing you must do is to use the Refresh method.
You therefore call objRefresher.Refresh and pull back the information from WMI.

Tip At first glance, this might seem strange because you are refreshing data you have not yet
received. But the key to understanding this concept is to realize that it is actually the refresher
that makes the query in the first place. You need to refresh the data to obtain the data the first
time. Failure to use the refresher to obtain the data prior to querying for the data is actually the
biggest mistake that people make when first using the refresher.

Chapter 12: Using the Performance Counter Classes 259
Refresh_PerfOS_Objects.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_PerfFormattedData_PerfOS_Objects"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objRefresher = CreateObject("WbemScripting.SWbemRefresher")

Set objRefreshItem = objRefresher.AddEnum(objWMIService,wmiQuery)

objRefresher.Refresh

For i = 1 To 4

For Each objItem in objRefreshItem.ObjectSet

objRefresher.refresh

wscript.echo "Events: " & objItem.Events

wscript.echo "Mutexes: " & objItem.Mutexes

wscript.echo "Processes: " & objItem.Processes

wscript.echo "Sections: " & objItem.Sections

wscript.echo "Semaphores: " & objItem.Semaphores

wscript.echo "Threads: " & objItem.Threads & vbcrlf

WScript.sleep 2000

next

Next

Refreshing a Single Counter

If you are interested in the performance characteristic of a single item, it does not make sense
to retrieve everything that is running on the computer and walk through all the data when
you need only monitor a single object. The procedure to monitor a single object is similar to
one used in the Refresh_PerfOS_Objects.vbs script. You need to create a refresher object, add
items to the refresher, and then use the Refresh method to obtain the data. This is where the
similarities end. Working with a single counter entails identifying a single instance in the
WMI query.

In the PercentProcessorUtilization.vbs script, I query only total processor utilization. The
Name property is the key value for the Win32_PerfFormattedData_PerfOS_Processor class. Once
I define the WMI query, I create a refresher object and use the Add method to add both the
WMI connection and the WMI query to the refresher object. To query a single instance, I use
the Add method instead of the AddEnum method because AddEnum is used to add a collection
of objects to the refresher object. I then use the Refresh method to refresh the data in the
refresher object. I loop through the data four times, refreshing the data each time.

PercentProcessorUtilization.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_PerfFormattedData_PerfOS_Processor.name='_Total'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objRefresher = CreateObject("WbemScripting.SWbemRefresher")

Set objItem = objRefresher.Add(objWMIService,wmiQuery).object

objRefresher.Refresh

For i = 1 To 4

260 Part IV: Classes
objRefresher.refresh

Wscript.echo "InterruptsPersec:" & objItem.InterruptsPersec

Wscript.echo "Name:" & objItem.Name

Wscript.echo "PercentIdleTime:" & objItem.PercentIdleTime

Wscript.echo "PercentInterruptTime:" & objItem.PercentInterruptTime

Wscript.echo "PercentPrivilegedTime:" & objItem.PercentPrivilegedTime

Wscript.echo "PercentProcessorTime:" & objItem.PercentProcessorTime

Wscript.echo "PercentUserTime:" & objItem.PercentUserTime & vbcrlf

WScript.sleep 3000

Next

Finding How Long Your System Has Been Up

One of the more intriguing formatted performance counter classes is the Win32_PerfFormatted-
Data_PerfOS_System class. This class can retrieve a number of extremely valuable performance
counters. It maps to the System object in System Monitor. As shown in Figure 12-2, the System
object in the Performance console can provide very useful information about the computer sys�
tem. You will use just one of these counters, the System Up Time counter.

Figure 12-2 System object monitoring the status of the operating system

In the SystemUptime.vbs script, the Win32_PerfFormattedData_PerfOS_System class does not
have a key value. I use the Get method to connect to the single instance of the operating sys�
tem, which I specify as @. I then retrieve the SystemUpTime property, which is reported in sec�
onds. I use two functions to format the output into a more palatable form. The first function
reports the number of hours, and the second reports the number of days the system has been
up. I do not need to use the refresher object in the SystemUptime.vbs script because I am
interested in only a one-time number. There is no point in refreshing the data.

SystemUptime.vbs

strComputer = "."

wmiNS = "\root\cimv2"

Chapter 12: Using the Performance Counter Classes 261
wmiQuery = "Win32_PerfFormattedData_PerfOS_System=@"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

numSeconds= objItem.SystemUpTime ' it is in seconds since last start

WScript.echo "the system has been up " & convertHours(numSeconds) & " hours"

WScript.echo "that translates to " & convertDays(numSeconds) & " days"

'### functions below ###

Function convertHours(numSeconds)

convertHours= int(numseconds/3600) ' number of seconds in an hour

End Function

function convertDays(numseconds)

convertDays = Int(numSeconds/86400) ' number of seconds in a day

End Function

Examining Process Threads

At times, you need to examine the threads of a process. Some applications spin up many
threads. For example, the system process in Microsoft Windows XP spins up more than 100
threads. Sometimes you will want to monitor these threads from a performance standpoint or
from a troubleshooting perspective. To do so, you might use the MonitorProcessThreads.vbs
script.

In the MonitorProcessThreads.vbs script, I define the WMI query, which is simply the name
of the formatted data class. Next, I include a variable called strProcess that holds the name of
the process that I want to monitor. In this script, I use the WinWord process, but you can
change this value to any process you have running on your computer at the time. I make the
connection into WMI by using the moniker and assign the returned SWbemService object to
the variable objWMIService. I then create a refresher object and assign it to the variable obj-
Refresher. Next, I add both the WMI connection and the WMI query to the refresher object by
using the AddEnum method of the SWbemRefresher object. I do this instead of using the Add
method because, although I am interested in only a single process, that process might have
multiple threads associated with it. I would need to know the exact thread number to connect
to only a specific thread. By performing the query as I do, I am actually retrieving all the pro�
cesses and all the threads on the computer, but I use the Instr function to filter out the infor�
mation to display only the process in which I am interested.

MonitorProcessThreads.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_PerfFormattedData_PerfProc_Thread"

strProcess = "winword"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objRefresher = CreateObject("WbemScripting.SWbemRefresher")

Set objRefreshItem = objRefresher.AddEnum(objWMIService,wmiQuery)

objRefresher.Refresh

For i = 1 To 4

For Each objItem in objRefreshItem.ObjectSet

objRefresher.refresh

262 Part IV: Classes
If InStr (1,objItem.name,strProcess,1) then

Wscript.echo "Caption:" & objItem.Caption

Wscript.echo "ContextSwitchesPersec:" & objItem.ContextSwitchesPersec

Wscript.echo "Description:" & objItem.Description

Wscript.echo "ElapsedTime:" & objItem.ElapsedTime

Wscript.echo "IDProcess:" & objItem.IDProcess

Wscript.echo "IDThread:" & objItem.IDThread

Wscript.echo "Name:" & objItem.Name

Wscript.echo "PercentPrivilegedTime:" & objItem.PercentPrivilegedTime

Wscript.echo "PercentProcessorTime:" & objItem.PercentProcessorTime

Wscript.echo "PercentUserTime:" & objItem.PercentUserTime

Wscript.echo "PriorityBase:" & objItem.PriorityBase

Wscript.echo "PriorityCurrent:" & objItem.PriorityCurrent

Wscript.echo "StartAddress:" & objItem.StartAddress

Wscript.echo "ThreadState:" & objItem.ThreadState

Wscript.echo "ThreadWaitReason:" & objItem.ThreadWaitReason

WScript.sleep 2000

End if

next

Next

Measuring Memory Utilization

You can use the Win32_PerfFormattedData_PerfOS_Memory class to retrieve cooked perfor�
mance counter data that reports memory utilization on your computer. In the Memory-
Stats.vbs script, I examine four critical performance counters to determine the memory
performance of the computer. The first counter is self-explanatory—AvailableMBytes. This
counter reports available memory (both physical and virtual) in megabytes. What is nice
about this property is that the number returned is easy to understand.

The next property I examine is the CommitLimit property, which determines how much mem�
ory can be committed on the computer before you have to expand the page file to obtain addi�
tional memory for the operating system. This is a critical performance counter because
expanding the page file results in significant disk input/output (I/O) and processor utilization.

The CommittedBytes property indicates how much memory on the system is already commit�
ted to various running applications. All this memory might not actually be in use, but it is
reserved for specific applications and is therefore not available for other uses.

The PageFaultsPerSec property reports the average number of page faults during the polling
period. It is important to monitor page faults because of the CPU expense involved in moving
information to and from the page file. Paging also incurs a performance penalty when you
read or write to the disk drive because typically the drives are the slowest parts of a computer.
You want to avoid paging as much as possible. The only way you can track and understand
this vital performance metric is to monitor it on a regular basis.

The MemoryStats.vbs script uses a refresher object that is created by using the CreateObject
command. Once the refresher object is created, I add the WMI service connection and the
WMI query to the refresher object by using the AddEnum method. I then execute the query by

Chapter 12: Using the Performance Counter Classes 263
calling the Refresh method of the refresher object. This command populates the data into the
refresher for the initial data retrieval. I then loop four times at 2-second intervals, each time
refreshing the data retrieved.

MemoryStats.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_PerfFormattedData_PerfOS_Memory"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objRefresher = CreateObject("WbemScripting.SWbemRefresher")

Set objRefreshItem = objRefresher.AddEnum(objWMIService,wmiQuery)

objRefresher.Refresh

For i = 1 To 4

For Each objItem in objRefreshItem.ObjectSet

objRefresher.refresh

wscript.echo "AvailableMBytes: " & objItem.AvailableMBytes

wscript.echo "CommitLimit: " & formatNumber(objItem.CommitLimit,,-1)

wscript.echo "CommittedBytes: " & formatNumber(objItem.CommittedBytes,,-1)

wscript.echo "PageFaultsPerSec: " & objItem.PageFaultsPerSec

WScript.echo " "

WScript.sleep 2000

next

Next

Using Raw Performance Counter Classes
The raw performance counter classes are documented in Appendix F, Table F-2. By using the
raw performance counter classes, you can make your own calculations in returning data to
your scripts. You have more control over the data and can obtain the actual instantaneous per�
formance counter data.

Monitoring Processor Utilization

In the PercentProcessorRaw.vbs script, I use the raw Win32_PerfRawData_PerfOS_Processor
class and obtain total processor utilization. When I get the PercentProcessorTime property, I
also get a time stamp. These values are written to variables N1 and D1. After I have obtained
the PercentProcessorTime property and the corresponding time stamp on the first pass
(TimeStamp_Sys100NS), I save the values to the N1 and D1 variables. I then pause the execu�
tion of the script for a couple of seconds by using the Wscript.Sleep command. I perform the
same WMI query a second time. This time I hold the results in a different variable—the
objItem2 variable. This enables me to work with the second set of properties. I once again
obtain the value of PercentProcessorTime and the accompanying time stamp, which is stored in
the TimeStamp_Sys100NS property.

I use two new variables to hold the PercentProcessorTime and the time stamp. N2 holds the
value of the PercentProcessorTime, and D2 holds the time stamp. I subtract the value of N1 from
N2, which yields the difference in processor time from the first and second WMI queries. I

264 Part IV: Classes
divide the result by the difference in the two time stamps, subtract everything from 1, and
multiple by 100, which yields the resultant processor utilization.

The PercentProcessorTime variable could contain a rather nasty number. I use the Round func�
tion to trim the number to two decimal places. Once the number is rounded, I use
Wscript.Echo to print the results.

PercentProcessorRaw.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_PerfRawData_PerfOS_Processor.Name='_Total'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

WScript.echo "Percent processor utilization"

For i = 1 to 8

Set objItem1 = objWMIService.get(wmiQuery)

N1 = objItem1.PercentProcessorTime

D1 = objItem1.TimeStamp_Sys100NS

WScript.Sleep 2000

Set objItem2 = objWMIService.get(wmiQuery)

N2 = objItem2.PercentProcessorTime

D2 = objItem2.TimeStamp_Sys100NS

PercentProcessorTime = (1 - ((N2 - N1)/(D2-D1)))*100

WScript.Echo Round(PercentProcessorTime,2)

Next

Working with the Logical Disk

You can use the raw performance counters to retrieve information related to the performance
of logical disks. Logical disks are different from physical disks; several logical disks can be
defined on a single physical disk, and they represent an abstract arrangement on the physical
drive. You often are concerned with the performance of a logical disk rather than the perfor�
mance of a physical drive.

In the PercentLogicalDiskRAW.vbs script, I define the wmiQuery to equal the
Win32_PerfRawData_PerfDisk_LogicalDisk class. I also specify the particular instance of the
logical disk I want to monitor. I am interested in all the instances, so I connect to the counters
representing all the logical drives.

Once I have defined the query, I make the connection into WMI. I use the WMI moniker for
its ease of use and then assign the WMI service object returned to the variable objWMIService.
I use a For Next loop and make eight passes. On each pass, I execute a WMI query retrieving
both a performance counter and a time stamp. The time stamp is contained in the
TimeStamp_Sys100NS property, which is the same property name used in the PercentProces�
sorRaw.vbs script. The classes used in both scripts are derived from the Win32_Perf class, and
the TimeStamp_Sys100NS property is inherited from that class.

PercentLogicalDiskRAW.vbs

strComputer = "."

wmiNS = "\root\cimv2"

Chapter 12: Using the Performance Counter Classes 265
wmiQuery = "Win32_PerfRawData_PerfDisk_LogicalDisk.name='_total'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

WScript.echo "Disk Utilization"

For i = 1 to 8

Set objItem1 = objWMIService.get(wmiQuery)

N1 = objItem1.PercentDiskTime

D1 = objItem1.TimeStamp_Sys100NS

WScript.Sleep 2000

Set objItem2 = objWMIService.get(wmiQuery)

N2 = objItem2.PercentDiskTime

D2 = objItem2.TimeStamp_Sys100NS

PercentUtilization = (1 - ((N2 - N1)/(D2-D1)))*100

WScript.Echo Round(PercentUtilization,2)

Next

Summary
In this chapter, we looked at using the WMI performance counter classes. We examined the
difference between raw and formatted (or cooked) performance counters and discussed when
to use one type of counter rather than the other. We examined in detail the various categories
of both cooked and raw counters. We discussed the use of the refresher object and when to
use it, and we also looked at a script that did not need to use the refresher.

Quiz Yourself
Q: What is the refresher object and what is it used for?

A: The refresher object is the SWbemRefresher object. It is used to execute queries and is
capable of refreshing the data after the query has been executed.

Q: Why do you need to use the refresher object?

A: You use the refresher object for certain performance counter classes that sample data
over time. Typically, these classes are cooked counter classes that report data such as the
percentage of processor utilization. To obtain the result, several measurements over a
period of time are required to calculate the average utilization of the object, and for each
measurement the data must be refreshed by using the refresher object.

Q: What is the primary consideration when using raw performance counter objects
as opposed to using cooked performance counter objects?

A: When you use raw performance counter objects, you must sample the data twice and
then perform your own calculation to obtain average values.

266 Part IV: Classes
On Your Own

Lab 24 Working with Formatted Performance Classes

In this lab, you will work with the formatted performance counter classes to develop a script
that is used to monitor real-time data on a server. During the course of this lab, you will
develop a refresher template you can use whenever you need to refresh data in a script.

1.	 Open the WmiTemplate.vbs script, and save it as RefresherTemplate.vbs. This will be a
template script you can use in the future when you need to refresh data.

2.	 In your newly named RefresherTemplate.vbs, turn off the On Error Resume Next line by
remarking it out.

3. Delete the Dim statement for the variable colItems.

4.	 You need three variables to work with the refresher. Place them under the other vari�
ables that are declared under the line Dim objItem. Name the variables objRefresher,
objRefreshItem, and i. The code to do this looks like the following:

Dim objRefresher, objRefreshItem, i

5.	 Under the line that makes the connection into WMI by using the GetObject command,
add a line that will create the SWbemRefresher object. Assign the refresher object that
comes back to the objRefresher variable. The line that does this looks like the following:

Set objRefresher = CreateObject("WbemScripting.SWbemRefresher")

6.	 Find the line that performs the ExecQuery method and populates the colItems variable
with the result of the query. Once you find it, delete the line. You will not use ExecQuery.
Instead, you will use a refresher. The line you must delete looks like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

7.	 In the location where you just deleted the Set colItems line, insert a line that adds the
wmiQuery and the objWMIService to the refresher object. Use the AddEnum method from
the refresher object to do this, and use the objRefreshItem variable to hold the collection
of refreshable items:

Set objRefreshItem = objRefresher.AddEnum(objWMIService,wmiQuery)

8.	 Now it is time to use the Refresh method from the refresher object to perform the initial
data refresh. This is a very simple command that looks like the following:

objRefresher.Refresh

9.	 Use a For Next loop to make four passes around the For Each Next loop. Use the i vari�
able to count the iterations. The For i = 1 to 4 line goes above the For Each statement, and
the Next goes at the bottom of the script.

10. At this point, the For Each statement should read as follows: For Each objItem in colItems.
You deleted colItems earlier, so change this to iterate through the refresher-supplied data.

Chapter 12: Using the Performance Counter Classes 267
Keep the For Each objItem part of the command, but change the colItems to something
else. When you use the AddEnum method to add items to the refresher, you add a collec�
tion—or an objectSet. To retrieve the items in the objectSet use For Each and a variable to
hold an individual instance in the object set, and then refer to the actual collection of
refreshable items. The code that does this looks like the following:

For Each objItem in objRefreshItem.ObjectSet

11. Go ahead and refresh the data in the refresher. You will again use the Refresh method:

objRefresher.refresh

12. After the last Wscript.Echo command, add a Sleep command to pause the execution of
the script to enable the data to change possibly between iterations. Use a Wscript.Echo
2000 command to pause execution for 2 seconds.

13. Save your work, but do not attempt to run the script because it will fail miserably.

14. Using the RefresherTemplate.vbs script you just created. Save the file as
StudentLab24.vbs.

15. Modify the wmiQuery line so that it targets the Win32_PerfFormattedData_PerfNet_Server
class. This is a simple value assignment to the wmiQuery variable that looks like the fol�
lowing:

wmiQuery = "Win32_PerfFormattedData_PerfNet_Server"

16. The only task left is to find the properties you wish to report. I picked out a few from the
Platform software development kit (SDK) that looked interesting. Put the property on
the other side of the objItem, and you can use the same name for the title. My completed
Wscript.Echo section looks like the following:

wscript.echo "errorsLogon: " & objItem.errorsLogon

wscript.echo "logonTotal: " & objItem.logonTotal

wscript.echo "filesOpen: " & objItem.filesOpen

wscript.echo "ServerSessions: " & objItem.ServerSessions

wscript.echo "sessionsLoggedOff: " & objItem.sessionsLoggedOff

wscript.echo "sessionsTimedOut: " & objItem.sessionsTimedOut

17. Save and run the script. It should run perfectly. You can use the RefresherTemplate.vbs
script to report on any property you wish to monitor on a refreshable basis. The only two
items that must be changed are the name of the class and the property you wish to
report.

Lab 25 Using Unformatted Performance Counters

In this lab, you will develop a script that uses the unformatted performance provider. The
script you will write will be used to monitor the disk utilization on your computer. You will be
using the Win32_PerfRawData_PerfDisk_PhysicalDisk class and taking several measurements
over time to make the calculations.

268 Part IV: Classes
1. Open the WmiTemplate.vbs script, and save it as StudentLab25.vbs.

2.	 To work with the raw performance counters, you need to perform two queries, track the
time stamp, and make your own calculation. Declare two variables to use to walk
through the WMI results: objItem1 and objItem2. The code to do this looks like the fol�
lowing:

dim objItem1, objItem2

3.	 Declare a counter variable to use with the For Next loop, as well as some variables to
hold the data that is read and the time stamp value. Use i, n1, n2, d1, and d2. The line
that declares these variables looks like the following:

Dim i, n1, n2, d1, d2

4.	 You also need to declare a variable that will hold the result of the calculation. I used a
variable called PercentUtilization. Declare this variable as shown here:

Dim PercentUtilization

5.	 Modify the wmiQuery line so that it points to the Win32_PerfRawData_Perf-
Disk_PhysicalDisk class. Instead of performing a Select * query, connect to a specific
instance of the Win32_PerfRawData_PerfDisk_PhysicalDisk class. Specify the name of the
instance to which you wish to connect. You are connecting to the instance that repre�
sents a total of all the drives on the system. The wmiQuery line looks like the following:

wmiQuery = "Win32_PerfRawData_PerfDisk_PhysicalDisk.name='_total'"

6.	 Delete the Set colItems = objWMIService.ExecQuery line. You are not going to perform an
ExecQuery in this script.

7.	 In place of the Set colItems line, add a Wscript.Echo line that will serve as the header for
your output. I used a very basic line, as shown here:

WScript.echo "Disk Utilization"

8.	 Delete the For Each objItem in ColItems and all the Wscript.Echo lines that were in the
template script. This actually comprises everything below the Wscript.Echo line you just
added.

9.	 Add a For i = 1 to 8 line and close it out with a Next at the bottom of your script. It looks
like the following:

For i = 1 to 8

Next

10. You want to perform the first of two WMI queries. Under the For i = 1 to 8 line, use the
objItem1 variable to hold the result of using Get to retrieve wmiQuery. It looks like the fol�
lowing:

Set objItem1 = objWMIService.get(wmiQuery)

Chapter 12: Using the Performance Counter Classes 269
11. Once you have executed the query, retrieve the PercentDiskTime property. Use the N1
variable to hold the results. It looks like the following:

N1 = objItem1.PercentDiskTime

12. In addition to obtaining the PercentDiskTime property, you must also retrieve a time
stamp to use in your calculations. The time stamp property to use is the TimeStamp_Sys-
100NS. It will be associated with objItem1, and you will hold the value in the D1 variable.
The completed line of code looks like the following:

D1 = objItem1.TimeStamp_Sys100NS

13. You have just obtained your first raw performance counters, so pause the script for a
couple of seconds to allow the values to change possibly. Use the Wscript.Sleep com�
mand to do this. It looks like the following:

WScript.Sleep 2000

14. Execute the second WMI query. It will be exactly the same query as the one you used
earlier. Use the objItem2 variable to hold the results. You are interested in obtaining the
numbers and the time stamp so you can use them in your calculations. The line of code
looks like the following:

Set objItem2 = objWMIService.get(wmiQuery)

15. Retrieve the PercentDiskTime property and the TimeStamp_Sys100NS property. Assign
them to N2 and D2, respectively. You can copy the N1 and D1 lines from earlier in the
script, or you can type in code that looks like the following:

N2 = objItem2.PercentDiskTime

D2 = objItem2.TimeStamp_Sys100NS

16. You need to figure out the percentage of disk time from the four numbers. To do this use
the following line of code:

PercentUtilization = (1 - ((N2 - N1)/(D2-D1)))*100

17. Print out the value of PercentUtilization that you calculated in the previous line of code.
You can use the Round function to obtain a cleaner number. The line of code that does
this is as follows:

WScript.Echo Round(PercentUtilization,2)

18. Save and run the script. It should run just fine. If it does not, compare your script with
the Lab25Solution.vbs script in the Chapter12\Lab25 folder on the accompanying CD.

P05622310.fm y, September 27, 2005 TuesdaPage 271 2:14 PM

Part V
Security and Troubleshooting

P05622310.fm y, September 27, 2005 TuesdaPage 272 2:14 PM

Chapter 13

Understanding WMI Security

In Chapter 12, we talked about the performance monitor classes. We discussed how we can use
them to obtain real-time data that can either form the basis of a reporting script or a monitoring
script. In this chapter, we examine WMI security. Everyone wants to talk about security—and
for good reason. It does not make sense to have something that enables administrators to make
changes to every workstation on the network if hackers can use the same tools to make changes
to every workstation on the network! There is a balancing act between security and function
ality. Some of the recent security changes made by Microsoft Corporation to both server and
workstation operating systems require new behaviors on the part of network administrators.
In this chapter, we look at the security we have built into Windows Management Instrumen
tation (WMI), and then we examine some of the special considerations for working in differ
ent environments.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of WMI scripting

■ The basics of WMI namespace organization

■ The basics of the Microsoft Windows security model

After you complete this chapter, you will be familiar with the following concepts:

■ The basics of using namespace security

■ The basics of security descriptors

■ The basics of access masks

■ The basics of working with share-level permissions

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter13 folder.
273

274 Part V: Security and Troubleshooting
Using WMI Namespace Security
One of the fundamental changes network administrators undertake is to modify the security
access on the different WMI namespaces. This can at times have unintended results. The prob
lem is that each WMI client is responsible for handling security, and without a clear under-
standing of the required access, changes can break applications that use WMI. WMI maintains
a list of users or groups that have access to a particular namespace. This list can be modified
either by using the WMI Control tool or by using a script. Each WMI provider can require cus
tomized security settings such as encryption or other specific settings.

Understanding the Defaults

Before you can modify the WMI namespace security, you first must understand the defaults so
you can assess whether they are sufficient to meet your needs. The default namespace permis
sions have been modified in Microsoft Windows XP and in Windows Server 2003. Each
namespace in WMI is secured with a namespace security descriptor. This security descriptor is
a byte array—it is not formatted in Security Descriptor Definition Language (SDDL) and there-
fore cannot be modified or manipulated by using the Win32_SecurityDescriptor class. You can-
not manipulate the byte array directly. If you examine it closely, you might find a security
identifier (SID) hidden in there. You will also find an indicator of the access rights granted,
but you cannot edit this byte array because the structure of the array is not documented, and
there are no tools available to edit it. The default namespace security makes the administrator
owner and grants all rights—including remotely accessing WMI on another computer. By
default, remote access to WMI requires Administrator rights on the computer.

A normal user has the ability to read static data in the WMI namespace—including WMI class
definitions. The normal user can also execute methods and read and write to objects supplied
by WMI providers. If a user attempts to execute a method, WMI will impersonate the user to
see whether that user has the permission to execute the method. WMI does this by checking
the access control list (ACL).

Administrators can do only three things that a normal user cannot do: edit static data in the
namespace, connect to remote computers, and change namespace security permissions. That
is it. Keep in mind, however, that a normal user is authenticated on the network—a normal
user is not an anonymous user. If these security settings do not meet your needs, you might
want to modify the security on the WMI namespaces, which we discuss in the next section.

Modifying Security on WMI Namespaces
At some time you might need to modify the security on a particular WMI namespace to
change it from the defaults. Essentially, you can do this in two ways: programmatically by
using a WMI script or by using the WMI Control Properties console. In this section, we exam
ine both of these procedures.

Chapter 13: Understanding WMI Security 275
You secure the WMI namespace by adjusting the namespace security descriptor. The security
descriptor determines who is able to access the namespace, whether that user can write to the
namespace, and whether the user is able to execute any operations in the namespace. If you
need to change the security descriptor, you can use the methods from the __SystemSecurity
class. If the RequiresEncryption qualifier is set on a namespace, the WMI client application or
script will be required to use an authentication level that supports encrypted remote proce
dure calls. When this is done, both the incoming and the outgoing calls are encrypted.

Working with Namespace Security Descriptors

Because each namespace has its own security descriptor, you can work with the permissions
that are described by WMI. The default WMI namespace security makes the local administra
tor the owner and provides the local Administrators group Full Control. If you connect to a
remote computer, you need to use an account that has local administrator rights by default.
You can also grant account permissions for each namespace in the WMI repository. If you con
nect to a remote computer, you must use administrator credentials or connect with a user
account that has privileges to the namespace on the target computer. If you attempt to make
a guest connection, even if the Guest account has privileges on the namespace, the connection
will fail because Distributed Component Object Model (DCOM) denies access to nonauthen
ticated users.

This illustrates the two facets of WMI security. The first element of security in WMI is the
namespace security that controls a user’s access to a namespace and the rights and privileges
the user has once inside the namespace. The other element of WMI security is DCOM, which
is used to control remote access to the methods of WMI. These two components of security
work together. Setting security for WMI involves working with both namespace security and
DCOM security. In Windows Server 2003, changes were made to DCOM that prevent anony
mous connections to WMI. This means you cannot use the Guest account to make a connec
tion, even if the Guest account is enabled and has namespace security permissions. DCOM
security on WMI does not permit nonauthenticated access.

Examining Inherited Security Settings

In WMI, namespace security is inherited. Subordinate namespaces inherit an ACL and secu
rity settings from a parent namespace, and an inheritance flag is set for each namespace. This
makes it possible for you to set security at both the parent namespace and at the child
namespace. If you do not want a namespace to inherit security settings, you can disable the
inheritance flag by clicking the Advanced button in the graphical user interface (GUI) of the
WMI Control tool (in the Security tab of the WMI Control tool, click Security, and select
Advanced). As shown in Figure 13-1, setting WMI namespace security is similar to setting
Microsoft Windows NT file system (NTFS) security permissions.

276 Part V: Security and Troubleshooting
Figure 13-1 Setting namespace security using the WMI Control tool

If you disable inheritance of security permissions, you must set the security access control
entries (ACEs) specifically. When you define the security settings in the ACL that control secu
rity for the namespace, pay close attention to the order of each entry because you can use a
Deny access or an Allow access entry and change the security for an entire group. Once the
entire group of entries is parsed, a given user’s security privileges are calculated and the user
is granted the appropriate level of access to the namespace.

Remember that just like with NTFS permissions, a Deny ACE overrides all other granted per-
missions. If a user is a member of two groups, one that has been granted Full Control and the
other that has been denied access, the user will not have access. The Administrators group is
the exception: administrators always have Full Control of the WMI namespace and cannot be
denied access. This is a security measure that keeps a program (or malware) from locking out
the admin. Also, this scheme protects intrepid admins from locking themselves out.

Administrators Always Have Full Control You cannot apply a Deny ACE against a
user that is a member of the local Administrators group. Actually, it is physically possible to
apply a Deny ACE to a member of the Administrators group, but the ACE will be ignored.
Whether because of membership in the Domain Administrators group or the local Administra
tors group, members of the Administrators group have Full Control of all WMI namespaces on
the computer. This is another good reason not to allow normal users to have Administrator
rights on the local machine. It also points to the need for administrators to have a second user
account that is not a member of the Administrators group to use for normal day-to-day use.
Network administrators should never read e-mail, surf the Web, or perform other such activi
ties while logged on to the machine with Administrator rights. Most of the users at Microsoft
no longer run with admin rights on their local machines; instead, they use the RunAs command
to obtain administrative permissions when such permissions are needed for an advanced task.

Chapter 13: Understanding WMI Security 277
Using the WMI Control Tool to Set Security

Assuming you need to make one or two changes on one or two machines, the easiest way to
modify the WMI namespace security settings is to use the WMI Control Properties console.
Before you start changing the security settings for WMI on your computer, perform a backup
of the Web-Based Enterprise Management (WBEM) repository. How to back up the repository
is covered in Chapters 1 and 14. The backup does include security permissions. If you really
mess up the security settings and you have made a recent WBEM repository backup, it is a
simple matter to recover. If, however, you do not have a backup of the repository, you will have
to delete and rebuild the WMI database.

By using the WMI Control Properties console to set security permissions (in the Security tab
of the WMI Control tool, click Security, and select Advanced) as shown in Figure 13-2, you
cannot directly block inheritance. You can remove an entry and then add it back in with the
appropriate permissions, but you do not have the option to block the inheritance of a setting.
You can clearly see this behavior in Figure 13-2: the option to block is unavailable.

Figure 13-2 Setting security permissions when inheritance cannot be directly blocked

Scripting WMI Namespace Security
If you have more than one or two computers, or you need to make several complicated
changes, the best method to set namespace security is to use a script to make the changes for
you. Indeed, if you were to mess up, it would be much easier to undo the effects of the script
because you have a record of the exact configuration settings applied. On the other hand,
there is generally no such record if you were to go on a “clicking frenzy.”

278 Part V: Security and Troubleshooting
Using the __SystemSecurity Class

There is only one instance of the __SystemSecurity class running on your machine at any time—
it is therefore a singleton class. Even though there is only one instance of the class, you can
find the __SystemSecurity class in every namespace that is defined in WMI, and this makes it
very easy to work with. The first thing you need to do when working with namespace security
is find out which access rights are actually defined for the user. In the GetAccessRights.vbs
script, I use the GetCallerAccessRights method to retrieve the rights of the user who launched
the script. If you were connecting remotely and using the ConnectServer method to specify
alternative credentials, the rights returned would be those of the person specified. Addition-
ally, if you use RunAs to run the script, the rights returned would be those of the person spec
ified in RunAs. This is an easy way to test security access rights for various users. All users, by
default, have the ability to call the GetCallerAccessRights method.

When you use the GetCallerAccessRights method of the __SystemSecurity class in the Get-
AccessRights.vbs script, you must specify an output variable to hold the rights bitmap that is
returned. If you do not specify an output variable, the call will not fail, but it will, in fact, return
an error status of 0, meaning the call succeeded—which is technically true because it worked,
but it just did not do anything.

If you change the value of wmiNS to a different namespace, the access rights that have been
defined for the calling user in that namespace will be returned.

GetAccessRights.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "__SystemSecurity=@"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

Wscript.Echo objItem.GetCallerAccessRights(strSD)

Wscript.Echo strSD

To obtain all the access rights for all the WMI namespaces, you can do a recursive query. To do
a recursive script, pass a parameter to the subroutine. You can call a subroutine by using the
name of the sub—the word Call is optional: you can use Call to make it a bit more obvious that
you are going into the subroutine, but it is not required. Once into the subroutine, you loop
through each namespace and use a function to obtain the security descriptor on the namespace.
The function you call is FunAccess, and you pass the namespace path that is contained in the
variable strNameSpace. You need to preface the namespace name with a backslash (\) to use
the GetCallerAccessRights method of the __SystemSecurity class.

Note that in the GetAccessRights.vbs script, I used Wscript.Echo to “capture the return code”
from using the method. The GetCallerAccessRights method requires you to capture the return
code. You cannot simply call the method without a provision for the return code. The return
code is a number—0 means no errors, any other number means you have a problem. I use

Chapter 13: Understanding WMI Security 279
ErrRTN to capture the return code in the GetAccessRightsInAllNamespaces.vbs script; how-
ever, as it currently stands, I am doing nothing with the return code. To get the security
descriptor from the GetCallerAccessRights method, I have to use a variable to hold the num
ber—strSD in this script. I assign strSD to the function name, FunAccess in this case, and I have
the security descriptor.

Translating the Access Security Descriptor

The access security descriptor number values are added together and are reported as a single
number. Once you have obtained the security descriptor for the WMI namespace, you must
translate it. To do this, use a function (contained in the Utilities folder on the accompanying
CD) that is called FunNSSec. The FunNSSec function matches each of the number codes con
tained in the security descriptor by ANDing the numerical values with the security descrip
tor—if a match is found, it echoes out the permissions granted by the value.

GetAccessRightsInAllNamespaces.vbs

strComputer = "."

Call EnumNameSpaces("root")

WScript.Echo("all done " & Now)

'#### functions and Subs below #####

Sub EnumNameSpaces(strNameSpace)

secSTR= funAccess("\" & strNameSpace)

WScript.Echo ("\" & strNameSpace)

WScript.Echo myTab & secSTR & myTab & funNSSEC(secSTR)

Set objSWbemServices = _

GetObject("winmgmts:\\" & strComputer & "\" & strNameSpace)

Set colNameSpaces = objSWbemServices.InstancesOf("__NAMESPACE")

For Each objNameSpace In colNameSpaces

Call EnumNameSpaces(strNameSpace & "\" & objNameSpace.Name)

Next

End Sub

Function funAccess(wmiNS) 'retrieves security descriptor from NS

dim wmiQuery

dim objWMIService

dim strSD

dim objItem

Dim errRTN

wmiQuery = "__SystemSecurity=@"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

errRTN=objItem.GetCallerAccessRights(strSD)

funAccess= strSD

End Function

Function funNSSEC (inMASK) 'Deciphers the security descriptor

Dim strPerm

If inMask AND 1 Then strPerm = strPerm & "WBEM_ENABLE, "

280 Part V: Security and Troubleshooting
If inMask AND 2 Then strPerm = strPerm & "WBEM_METHOD_EXECUTE, "

If inMask AND 4 Then strPerm = strPerm & "WBEM_FULL_WRITE_REP, "

If inMask AND 8 Then strPerm = strPerm & "WBEM_PARTIAL_WRITE_REP, "

If inMask AND 16 Then strPerm = strPerm & "WBEM_WRITE_PROVIDER, "

If inMask AND 32 Then strPerm = strPerm & "WBEM_REMOTE_ACCESS, "

If inMask AND 131072 Then strPerm = strPerm & "READ_CONTROL, "

If inMask AND 262144 Then strPerm = strPerm & "WRITE_DAC, "

funNSSEC = strPerm

End function

Quick Check

Q: For what are WMI namespace security masks used?

A: WMI namespace security masks are used to control user access into a WMI namespace.

Q: How can you determine whether a person running a script has access rights to a cer
tain namespace?

A: To determine whether a person running a script has access rights to a certain namespace,
you can connect to the namespace and use the GetCallerAccessRights method from the
__SystemSecurity class.

Working with the Namespace Security Descriptor

As mentioned earlier, the namespace security is a byte array, and no tools enable you to trans-
late it, manipulate it, or do anything to it other than read and set the security descriptor. If you
want to set namespace security on a WMI namespace, the best way to do so programmatically
is to set the security on a namespace using the WMI Control Properties console, and then
retrieve the namespace security descriptor as illustrated in the GetSecurityDescriptor-
OfNS.vbs script.

The GetSecurityDescriptorOfNS.vbs script uses the Get method in a similar capacity as to how
it is used in other scripts that use the __SystemSecurity class. Once you have a connection into
WMI, and you have the __SystemSecurity class, use the GetSD method. Capture the return
code with the errRTN variable, and go into a subroutine to check for errors. If no error is
returned, use a function to format the security descriptor into a semireadable format. Because
the namespace security descriptor is an array, you use the Microsoft Visual Basic Scripting Edi
tion (VBScript) Join function to convert it into an array using a comma as the delimiter.

GetSecurityDescriptorOfNS.vbs

strComputer = "."

wmiNS = "\root\wmi"

wmiQuery = "__SystemSecurity=@"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.Get(wmiQuery)

errRTN = objItem.GetSD(strSD)

Chapter 13: Understanding WMI Security 281
SubCheckERR

Wscript.Echo forMatSD(strSD)

Sub subCheckERR

If errRTN <> 0 Then

WScript.Echo "an error occurred. It was " & errRTN

WScript.Quit

End If

End sub

Function forMatSD(strSD)

forMatSD = "{" & join(strSD,",") & "}"

End Function

Working with Share Permissions
For many network administrators, creating a share is very easy. It is also easy to create a share
by using a script. But what if you need to work with the security permissions on those shares?
This is where you need to begin to work with security permissions with WMI. In the following
Share.vbs script, I query for the existence of a specific share—a share simply called a. Once I
find the share, I print out the share name, the path, and the ShareMask property. I then pro
ceed to obtain the share access mask by using the GetAccessMask method.

When Is a Mask Not a Mask? In Windows XP and Windows Server 2003, the Access-
Mask property is deprecated but is still defined for backward compatibility. As a result, the
AccessMask property always returns a null value. On systems running Windows XP and Win
dows Server 2003, do not use this property—instead, use the GetAccessMask method of the
Win32_Share class.

If you were to look at the Managed Object Format (MOF) file for the Win32_Share class, you
would see the AccessMask property listed as follows:

[read: ToSubClass, DEPRECATED: ToSubClass] uint32 AccessMask;

Even if a property is deprecated, at times it will still return data, but that is not the case here.
The AccessMask property still works, however, for earlier versions of the Windows operating
system.

Once an item is marked as deprecated, no further development work is going into it, and you
should begin planning to move to something else or to find another manner to retrieve the
information.

282 Part V: Security and Troubleshooting
Use Wbemtest to Troubleshoot Scripts
If you ever have a problem getting a property or a method to work, and it is not
throwing an error but rather is just not working, use Wbemtest.exe. You can launch
Wbemtest.exe by clicking Start, Run, and typing wbemtest.exe in the Open box.
Once it is running, click Connect to connect to a particular namespace. Generally,
you will want to open a class.

Then, at this point, you have several options. Often, I open the MOF file by clicking
Show MOF. As you can see in the graphic below, the MOF file can provide a good look
inside a class and can let you know what the class expects from the script. This is where
you will find information about special privileges that might be required, what type of
data a property expects (string, array, integer), or even whether a property is deprecated.

Wbemtest can be an invaluable tool for troubleshooting scripts. If a script does not
work, look at the MOF file. If the script is not returning data, look for instances. If you
wonder whether a query is right, click the Query button. Wbemtest is a Swiss Army
knife for scripters, and everyone should know how to use it—plus, it is always installed.

Chapter 13: Understanding WMI Security 283
In the Share.vbs script, after I use the GetAccessMask method, I get back an access mask that
describes the rights to the share held by the person running the script. To interpret the rights
that are represented by the access mask, I use the StrAccessMask function. In the function, I
use ANDing to look for the presence of the numerical values of the right in the access mask.
If I find them, I add the name of the right represented by the integer to the strPerm string.
When I am done with this analysis, the function returns the completed access string.

Share.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_share where name = 'a'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo "Share Name: " & objItem.name

Wscript.Echo "Share Path: " & objItem.path

Wscript.Echo "Share Mask Property: " & objItem.accessMask 'NULL

wscript.echo "Share Mask method:" &strAccessMask(objItem.getAccessMask)

'WScript.Echo(strMask)

Next

Function strAccessMask(inMask)

Dim strPerm

If inMask AND 1048576 Then strPerm = strPerm & "Synchronize, "

If inMask AND 524288 Then strPerm = strPerm & "Write Owner, "

If inMask AND 262144 Then strPerm = strPerm & "Write DAC, "

If inMask AND 131072 Then strPerm = strPerm & "Read Control, "

If inMask AND 65536 Then strPerm = strPerm & "Delete, "

If inMask AND 256 Then strPerm = strPerm & "File Write Attrib, "

If inMask AND 128 Then strPerm = strPerm & "File Read Attrrib, "

If inMask AND 64 Then strPerm = strPerm & "File Delete Child, "

If inMask AND 32 Then strPerm = strPerm & "File Traverse, "

If inMask AND 16 Then strPerm = strPerm & "File Write Ext Attr, "

If inMask AND 8 Then strPerm = strPerm & "File Read Ext Attr, "

If inMask AND 4 Then strPerm = strPerm & "File Add Sub, "

If inMask AND 2 Then strPerm = strPerm & "File Add File, "

If inMask AND 1 Then strPerm = strPerm & "File List Dir. "

strAccessMask = strPerm

End Function

Who Has Access to This Share?

At times you need to know who has access to a particular share. In the Share.vbs script, you
can connect to a specific share and look at the access of a specific user who has rights on that
share. In the PermissionsOnShare.vbs script, I use an associators of query and look at the rela
tionship between the Win32_LogicalShareSecuritySetting class and the Win32_Sid class. I again
connect to a specific share, but now the SID and the account name of all the users who have
permissions defined on the share are returned.

284 Part V: Security and Troubleshooting
In the associators of query in the PermissionsOnShare.vbs script, I specify the ResultClass is a
Win32_Sid. In this way I can retrieve the SID and the AccountName property, which enables me
from having to make additional queries and use extra WMI classes that would complicate the
script and make it more difficult to troubleshoot and maintain.

PermissionsOnShare.vbs

strComputer = "."

wmiNS = "\root\cimv2"

strShare = "'a'" 'name of a Share on the system

wmiQuery = "associators of{win32_LogicalShareSecuritySetting="_

& strShare & "}where resultClass = win32_sid"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo "SID: " & objItem.sid

WScript.Echo objItem.accountName

Next

Mapping Users and Rights

Next you need to look at the users and their associated rights to the share. The LogicalShare-
AccessRights.vbs script answers the questions “What shares are defined on my server?” and
“Who has access to them?” In this script, I use the Win32_LogicalShareAccess class. First, I
make the connection into WMI by using the moniker and specifying the name of the com
puter and the namespace to which I wish to connect. Because the Win32_LogicalShareAccess
resides in the root\cimv2 namespace, that is the one you assign to the wmiNS variable.

The ExecQuery method returns a collection, and I use For Each Next to walk through the col
lection. The MyFun function uses the intrinsic String function from VBScript to repeat a char
acter a specified number of times. I use the Len function from VBScript to determine the
length of the line that contains the name of the security setting value and the string label. I
feed that number to the String function while specifying the equal sign as the character to
repeat. When I run the script, this provides an output listing that is easier to read. I use the
FunShare function to translate the access mask into something a bit more readable, and I also
retrieve the SID of the user who has access to the share. This script prints out the information
on every share defined on the server. On a large file and print server, it could take a little while
for this script to complete.

LogicalShareAccessRights.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_LogicalShareAccess"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Wscript.Echo myFun("SecuritySetting: " & objItem.SecuritySetting)

Wscript.Echo "AccessMask: " & funShare(objItem.AccessMask)

Chapter 13: Understanding WMI Security 285
WScript.Echo "Trustee" & objItem.Trustee

Wscript.Echo "Type: " & objItem.Type

Wscript.Echo "Inheritance : " & objItem.Inheritance

Wscript.Echo "GuidObjectType: " & objItem.GuidObjectType & vbcrlf

Next

'##### Functions are below ###

Function funShare(inMask)

Dim strPerm

If inMask AND 0 Then strPerm = strPerm & "FILE_LIST_DIRECTORY, "

If inMask AND 1 Then strPerm = strPerm & "FILE_ADD_FILE, "

If inMask AND 2 Then strPerm = strPerm & "FILE_ADD_SUBDIRECTORY, "

If inMask AND 3 Then strPerm = strPerm & "FILE_READ_EA, "

If inMask AND 4 Then strPerm = strPerm & "FILE_WRITE_EA, "

If inMask AND 5 Then strPerm = strPerm & "FILE_TRAVERSE, "

If inMask AND 6 Then strPerm = strPerm & "FILE_DELETE_CHILD, "

If inMask AND 7 Then strPerm = strPerm & "FILE_WRITE_ATTRIBUTES, "

If inMask AND 8 Then strPerm = strPerm & "FILE_DELETE_CHILD, "

If inMask AND 16 Then strPerm = strPerm & "DELETE, "

If inMask AND 17 Then strPerm = strPerm & "READ_CONTROL, "

If inMask AND 18 Then strPerm = strPerm & "WRITE_DAC, "

If inMask AND 19 Then strPerm = strPerm & "WRITE_OWNER, "

If inMask AND 20 Then strPerm = strPerm & "SYNCHRONIZE, "

funShare = strPerm

End function

Function myFun(input)

Dim lstr

lstr = Len(input)

myFun = input & vbcrlf & string(lstr,"=")

End function

Quick Check

Q: If you want to match a user and a SID to each other, which WMI class can you use?

A: If you want to match a user and a SID to each other, the Win32_Sid class is the easiest to
use.

Q: Name one tool that is easy to use to test WMI functionality.

A: Wbemtest.exe is a good tool to use to test WMI functionality.

Summary
In this chapter, we looked at the fundamentals of WMI security. We examined WMI
namespace security and discussed methods for retrieving calling user access rights, getting
the namespace security masks, and setting WMI security descriptors. These tasks were done
by using the __SystemSecurity WMI class. Then we examined the use of security descriptors on
shares and looked at several WMI classes.

286 Part V: Security and Troubleshooting
Quiz Yourself
Q: What is an easy way to set namespace security on a WMI namespace?

A: An easy way to set namespace security on a WMI namespace is to use the GetSD
method of the __SystemSecurity class to retrieve the security descriptor of a namespace
that has the rights you want to duplicate. Then use the SetSD method of the
__SystemSecurity class to write the security descriptor to the namespace you wish to
secure.

Q: You are using the Win32_Share class to generate a listing of shares that are on a
workstation that runs Windows XP. When you query the AccessMask property of the
Win32_Share class, it does not return any information. What could be the problem?

A: When you query the AccessMask property of the Win32_Share class on a computer
running Windows XP or later, it will not return any information because the property
has been deprecated and is no longer supported.

Q: You are working with a security class in WMI, and the results are not coming
back the way you expect. You look up the class in the documentation and on the
Internet, but you do not find any information that can help you. What is one step
you can take to see what the class expects or whether the property is even imple
mented in your operating system?

A: If you are working with a security class (or any other class, for that matter) and it does
not seem to be working properly, use Wbemtest.exe to open the class and examine its
properties and instances. Next, open the MOF file to see whether the property you are
working with is implemented or deprecated.

On Your Own

Lab 26 Creating a WMI Namespace

In this lab, you will create a WMI namespace called myNS1. You will use the WMI Control
Properties console to assign custom permissions to myNS1, and then you will use a script to
retrieve and interpret those permissions.

1.	 Before you start creating namespaces and changing security descriptors, make sure you
have a current backup of the WMI repository.

2.	 Open a blank Microsoft Management Console (MMC). Click Start, Run, and type MMC
in the Open box.

3. Add the WMI Control Properties console by clicking File, Add/Remove Snap-in.

4. Click Add, select WMI Control, and click Add.

5. Click Local Computer, and then click Finish.

Chapter 13: Understanding WMI Security 287
6. Click Close, and then click OK to finish adding the console.

7. Right-click WMI Control (Local), and click Properties.

8. Click the Backup/Restore tab, and click Back Up Now.

9. Create a folder off the root called wmiBackup.

10. Use your DateTime for the backup as the backup file name (it might look something like
July23PM.rec).

11. Click Open, and the backup will start. (For reference, it takes only a few seconds to per-
form the backup on my laptop.)

12. Create a namespace called myNS1 under the root namespace. To create the namespace,
open and run the CreateWMINS.vbs script from the Chapter13\Lab26 folder on the
accompanying CD.

13. To confirm the namespace was created, open and run the ListNameSpaces.vbs script
from the Chapter13\Lab26 folder. You should see the myNS1 namespace listed.

14. Click the Security tab, and navigate to the myNS1 namespace.

15. Click the myNS1 namespace, and then click Security.

16. Click the LOCAL SERVICE user, and deny all rights by clicking each check box in the
Deny column

17. Do the same thing for the NETWORK SERVICE user. (Do not worry about this breaking
anything because you just created this namespace and nothing is using it—plus, you
have a backup.)

18. Now you will develop a script to retrieve the security descriptor from the myNS1
namespace. Begin by opening the WmiTemplate.vbs script and saving it as
StudentLab26.vbs.

19. Add two variables in the header section of the script. The first is strSD, which is an out-
put variable and will hold the security descriptor from the GetSD method. The second
variable is errRTN, which will hold the return code from calling the GetSD method. The
code to do this looks like the following:

dim strSD 'outPut variable holds security descriptor from GetSD.

dim errRTN 'captures return code from the GetSD method.

20. Modify the value of wmiNS so it points to the new namespace. It will be root\myNS1. The
code looks like the following:

wmiNS = "\root\myNS1"

21. Modify the wmiQuery. It will select the __SystemSecurity class as a singleton class, so use
@ to specify the singleton. The code for this looks like the following:

wmiQuery = "__SystemSecurity=@"

288 Part V: Security and Troubleshooting
22. Change Set colItems to Set objItem. Also, instead of using ExecQuery, use the Get method.
The revised line looks like the following:

Set objItem = objWMIService.Get(wmiQuery)

23. Delete the entire For Each Next loop. The section looks like the following:

For Each objItem in colItems

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Wscript.Echo ": " & objItem.

Next

24. Call the GetSD method from the __SystemSecurity class. Also, capture the return code
with the errRTN variable. This line looks like the following:

errRTN = objItem.GetSD(strSD)

25. Create a subroutine called SubCheckERR. Evaluate errRTN. If errRTN is not equal to 0,
print out the value of errRTN and end the script. The code looks like the following:

Sub subCheckERR

If errRTN <> 0 Then

WScript.Echo "an error occurred. It was " & errRTN

WScript.Quit

End If

End sub

26. Under the errRTN = objItem.GetSD(strSD) line, enter the subroutine to evaluate the
return code. To do this, simply call the subroutine: SubCheckERR.

27. Create a function to format the security descriptor for ease of use. Call the function For-
MatSD and name your input strSD. You will need to prefix the security descriptor with
an opening curly brace enclosed in quotation marks ("{") and then end it with a closing
curly brace enclosed in quotation marks ("}"). Because the security descriptor is con
tained in an array, use the Join function to put it into a string and specify each separator
as a comma. The completed function looks like the following:

Function forMatSD(strSD)

forMatSD = "{" & join(strSD,",") & "}"

End Function

28. Save and run the script. It will return something like the following (but on a single line):

{1,0,4,129,192,0,0,0,208,0,0,0,0,0,0,0,20,0,0,0,2,0,172,0,8,0,0,0,1,0,20,0,63,0,6,0,1,

1,0,0,0,0,0,5,20,0,0,0,1,0,20,0,63,0,6,0,1,1,0,0,0,0,0,5,19,0,0,0,0,18,24,0,63,0,6,0,1

,2,0,0,0,0,0,5,32,0,0,0,32,2,0,0,0,18,20,0,19,0,0,0,1,1,0,0,0,0,0,5,20,0,0,0,0,18,20,0

,19,0,0,0,1,1,0,0,0,0,0,5,19,0,0,0,0,18,20,0,19,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,18,20,

0,19,0,0,0,1,1,0,0,0,0,0,5,20,0,0,0,0,18,20,0,19,0,0,0,1,1,0,0,0,0,0,5,19,0,0,0,1,2,0,

0,0,0,0,5,32,0,0,0,32,2,0,0,1,2,0,0,0,0,0,5,32,0,0,0,32,2,0,0}

This completes the lab.

Chapter 13: Understanding WMI Security 289
Lab 27 Setting WMI Namespace Permissions

In this lab, you will use the permissions you retrieve from the myNS1 WMI namespace and
apply those permissions to a new WMI namespace called myNS2. You will then use a script to
delete both namespaces.

1.	 Open the CreateWMINS.vbs script from the Chapter13\Lab27 folder, and make sure it
is set to create a namespace called myNS2. Run the script to create the namespace. Close
the script when you are finished.

2.	 Run the ListNameSpace.vbs script to confirm that you now have a namespace called
myNS1 and a namespace called myNS2. Close the script when you are finished.

3.	 Open either your completed student script StudentLab26.vbs or the Lab27Starter.vbs
script. Save the file as StudentLab27.vbs.

4.	 You need to add some variables to hold the new connection to the new namespace. The
variables will be objWMIService1, objItem1, wmiNS1, and errMSG. The code looks like
the following:

Dim objWMIService1

Dim objItem1

Dim wmiNS1

Dim errMSG

5.	 Copy the Set objWMIService line and paste it under the original. Change objWMIService
to objWMIService1 on the copied line. It looks like the following:

Set objWMIService1 = GetObject("winmgmts:\\" & strComputer & wmiNS1)

6.	 Copy the Set objItem line and paste it below the original. Change objItem to objItem1 and
objWMIService to objWMIService1 in the copied line. It looks like the following:

Set objItem1 = objWMIService1.Get(wmiQuery)

7.	 Assign the string "Get security descriptor" to the errMSG variable. This value will be
passed to the error checker to inform you whether the operation was successful. The
code looks like the following:

errMSG = "Get security descriptor"

8.	 Because you are not interested in the text of the security descriptor, you can delete the
Wscript.Echo ForMatSD line as well as the ForMatSD function from the bottom of the
script.

9.	 Set the security descriptor on the myNS2 namespace. To do this, use the SetSD method
from the connection to the myNS2 namespace. The line of code looks like the following:

errRTN =objItem1.SetSD(strSD)

10. Assign the message "Set security descriptor" to the errMSG variable. The code looks like
the following:

errMSG = "Set security descriptor"

290 Part V: Security and Troubleshooting
11. Call the SubCheckERR subroutine to see whether the method was successful.

12. Add an Else clause to the SubCheckERR subroutine. The Else clause will echo out "no
errors for: " and the errMSG. Insert this after the Wscript.Quit command and before the
End If. The code looks like the following:

Else

WScript.Echo "no errors for: " & errMSG

13. Save and run the script. You should see two messages that indicate the get security
descriptor process succeeded and the set security descriptor process succeeded.

14. Open the WMI Control Properties console, and navigate to the myNS2 namespace. You
should see the same security settings as you have on myNS1 namespace.

15. Now let’s clean up. Open the DeleteNameSpace.vbs script. Look at the wmiQuery line.
Run it once to delete the myNS2 namespace.

16. Edit the wmiQuery line, change wmiNS2 to wmiNS1, and run it a second time.

17. Run the ListNameSpaces.vbs to ensure that both the myNS1 and the myNS2
namespaces are indeed gone. Once the cleanup is complete, so is the lab.

Chapter 14

Troubleshooting WMI

In Chapter 13, we examined Windows Management Instrumentation (WMI) security. We
looked at the concept of WMI namespace security and discussed two ways to modify security
on the namespaces. In this chapter, we look at troubleshooting WMI. In the past, trouble-
shooting WMI was not as difficult, but with the widespread adoption of WMI by many critical
network monitoring software packages, the WMI environment has become more complex.

Before You Begin
To work through this chapter, you should be familiar with the following concepts:

■ The basics of working with WMI namespaces

■	 The basics of writing a WMI script, connecting to namespaces, and retrieving class infor
mation

■ The basics of how to write a script using alternate credentials to make a connection

After you complete this chapter, you will be familiar with the following concepts:

■ The services involved in making WMI work

■ The dependencies that must be met for WMI to work

■ The symptoms of a corrupt database

■ The common methods of recovering from problems with WMI

Note All the scripts used in this chapter are located on the CD that accompanies this book
in the \Scripts\Chapter14 folder.

Identifying the Problem
WMI is one of those services that simply works. Most people never have to troubleshoot WMI;
in fact, many network administrators do not even know that WMI exists or that their sophis
ticated monitoring and tracking application relies heavily on the services of WMI. For many,
291

292 Part V: Security and Troubleshooting
the only time that they even begin to learn about WMI is when a critical application suddenly
quits. Unfortunately, this is the wrong time to begin to learn about WMI and, more important,
how to troubleshoot WMI.

Spotting Common Sources of Errors

What are some of the more common types of WMI errors? In general, problems with WMI are
in one of the following four categories:

■ WMI database corruption

■ Distributed Component Object Model (DCOM) security issues

■ Provider security issues

■ Firewall issues

Basically, that’s it. The preceding comprise 90 percent of all the WMI support calls that
Microsoft Product Support Services (PSS) support professionals receive. The other 10 percent
are truly strange, esoteric, or downright exotic problems. In this chapter, we therefore focus on
the four categories that cause 90 percent of the problems.

Testing the Local WMI Service
The first task when troubleshooting WMI is to test the local WMI service to see if it responds
to requests. Check whether WMI is actually working or whether it is corrupt, hung, or in
some other nonfunctioning state. In fact, many problems that at first appear to be WMI prob
lems are not WMI problems at all. The application that is using WMI could have a problem, or
the script you are trying to run could have a problem.

You can use two utilities to test WMI easily, reliably, and effectively: the WMI Control Proper-
ties console and the Windows Management Instrumentation Tester (Wbemtest.exe). Although
these utilities do not determine specifically whether you have a problem with WMI, they do
detect whether WMI is working. If the two tools do not work, you have a problem that bears
further investigation.

Using the WMI Control Tool

The most basic check you can make to see whether WMI is working properly is to open the
WMI Control Properties console and see if it will connect. If it will not connect to the local
instance of WMI running on your computer, you have a symptom of a more serious problem
with WMI. On the other hand, if it does connect, it does not mean that there is no problem,
but that at least some things are working correctly. This is the easiest check to make and
should be the first step in troubleshooting. If the WMI service does not have the appropriate
configuration, the connection will fail.

Chapter 14: Troubleshooting WMI 293
If the connection with WMI succeeds, the WMI Control Properties console, shown in Figure
14-1, appears. In the General tab, you can see the operating system version build number, ser
vice pack version, and the WMI version. In Microsoft Windows XP and Windows Server 2003,
the operating system build number and the WMI version number should match. In Microsoft
Windows 2000, the WMI version number is 1085.0005. The other important piece of informa
tion in this tab is the WMI location, which should be %SystemRoot%\System32\WBEM. (In
most cases, %SystemRoot% is reported as C:\WINDOWS, as shown in Figure 14-1.)

Figure 14-1 The General tab in the WMI Control Properties console displays troubleshooting
information

Pay Attention to Dependencies
You can examine service dependencies as another way of obtaining an indicator of the
health of the WMI service. This is very important in the troubleshooting process; I have
seen cases in which administrators believed they had a WMI problem, uninstalled the
WMI service or deleted the WMI database to rebuild it, and still the actions did not solve
the “WMI problem.” Although not definitive, the state of a dependent service can pro-
vide a clue as to the health of WMI.

If the WMI service is not running, several other services will not function either. The
Security Center, SMS Agent Host, and Windows Firewall are some of the services that
depend on WMI. These service dependencies can be found in the Services console, as
shown in Figure 14-2. If WMI is not functioning, you should notice several errors in the
Windows system event log indicating service failures.

294 Part V: Security and Troubleshooting
Figure 14-2 Listing of WMI service dependencies

Using Scriptomatic

Scriptomatic is a tool created by Microsoft that is useful in troubleshooting scenarios. Scrip
tomatic connects to any WMI namespace and lists all the classes in the namespace. When you
choose a class, Scriptomatic generates a Microsoft Visual Basic Scripting Edition (VBScript)
file listing all the properties of the class. You can then run the script from within Scriptomatic.
If no properties are listed or if the script that is generated does not produce output when it is
run, you might have a problem with WMI. You can read more about and download Scrip
tomatic from the following Web site: http://www.microsoft.com/technet/scriptcenter/tools/
wmimatic.mspx.

Examining the Status of the WMI Service

If the WMI Control Properties console cannot make a local connection, check to see whether
the WMI service is running. The following steps list the easy way to do this:

1. Open a CMD prompt.

2. Type net start.

3. Near the bottom of the list, look for Windows Management Instrumentation.

If it appears in the list, it is started. If it does not appear, it is not running. This would be rather
strange because the WMI service should restart itself if it stops or is stopped. The recovery set
ting for WMI is set to restart the service on the first and subsequent failures. The recovery
interval is set to 1 minute. If the WMI service fails, it will attempt a restart of the service every
minute.

Chapter 14: Troubleshooting WMI 295
Next, examine the service settings. To do this use the Services console. The following steps
walk you through using this console:

■ Click Start, and then click Run.

■ In the Run dialog box, type Services.msc in the Open box, and then click OK.

■	 Scroll down the list until you find Windows Management Instrumentation. Double-
click it.

■	 Click the Log On tab. Under Log On As, Local System Account should be selected. The
Allow Service To Interact With Desktop option should not be selected.

■	 Click the Recovery tab. Under Select The Computer’s Response If This Service Fails, for
First Failure, Second Failure, and Subsequent Failures the Restart The Service option
should be selected. The Reset Fail Count After option should read 1 Days, and the
Restart Service After option should read 1 Minutes. This is illustrated in Figure 14-3.

Figure 14-3 Recovery settings of the WMI service

Using Wbemtest.exe

You can use the Windows Management Instrumentation Tester (Wbemtest.exe) to trouble-
shoot WMI. In addition to checking whether WMI is actually running and accepting connec
tions (as the WMI Control Properties console does), Wbemtest can be used to test the
functionality of almost every aspect of WMI, including security. When using Wbemtest, keep
in mind that it cannot be used to specify alternate credentials for a local connection. To test
alternate credentials, you must make a remote connection. In effect, Wbemtest is using the
SWbemLocator method to supply alternate credentials, and SWbemLocator does not permit
supplying alternate credentials for a local connection.

296 Part V: Security and Troubleshooting
Quick Check

Q: What is the easiest way to check whether WMI is really broken?

A: The easiest way to check whether WMI is really broken is to open the WMI Control Prop
erties console. If it makes a connection to WMI, it indicates that WMI is not totally broken—
but there might be other problems. On the other hand, if the WMI Control tool cannot con
nect, you have a problem with WMI.

Q: Why is Wbemtest unable to permit you to make a local connection into WMI using
alternative credentials?

A: Wbemtest does not permit you to make a local connection into WMI using alternative
credentials because WMI does not permit it.

Testing Remote WMI Service
WMI is already set up to run remotely. The procedures for testing the remote WMI service
are essentially the same procedures that you use when working locally. In the initial stages of
testing the ability of WMI to respond to remote requests, the tools and procedures are very
similar.

Using the WMI Control Tool Remotely

The first tool you can use is the WMI Control tool. Make sure that you start the tool in the cor
rect manner or else the remote function of the tool will not be available. The following steps
illustrate how to use the WMI Control tool to make a remote connection:

1. Click Start, and then click Run.

2. In the Run dialog box, type wmimgmt.msc in the Open box, and then click OK.

3. Right-click WMI Control (Local).

4. Click Connect To Another Computer.

5. Click Another Computer, and then enter the name of the remote computer.

6. If needed, click Change to provide user credentials.

7. Click OK.

8. Right-click WMI Control (remote system name).

9. Click Properties.

If you cannot make a remote connection using the WMI Control tool, you must ensure that
you have checked WMI locally on each computer. If you have checked both computers locally,
the next steps are as follows:

Chapter 14: Troubleshooting WMI 297
1. Check connectivity.

2. Check firewall issues.

3. Check rights/permissions.

4. Check DCOM settings.

Testing the Scripting Interface
After you have checked for local and remote WMI functionality, you might need to test the
scripting interface. To do this, check both the core WMI provider and the provider host inter-
face. You can use a script to do this. In the RetrieveWMISettings.vbs script, I use the Connect-
Server method from the SWbemLocator object because it is already set up to accept alternative
connections on a remote computer, which enables a fuller range of tests. I connect to the
Win32_WMISetting class. There is only one instance of the Win32_WMISetting class. I use the
at symbol (@) to get the one instance of the Win32_WMISetting class that represents the WMI
settings for the computer. After the query is executed, I use the GetObjectText_ method, which
retrieves all the properties in the class as well as the values assigned to those properties. The
output text will be in Managed Object Format (MOF) format. I cannot specify any modifiers
for this method. The input flag is optional. If you choose to specify the input flag, you must
supply a zero because zero is the only value allowed for this flag. It will not change the way the
method operates, so I omit it in the RetrieveWMISettings.vbs script.

RetrieveWMISettings.vbs

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_WMISetting=@"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'U.S. English. Can leave blank for current language

strAuth = ""'if specify domain in strUsr, this must be blank

iFlag = "0" 'only two values allowed here: 0 (wait for connection), 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, _

wmiNS, strUsr, strPWD, strLocl, strAuth, iFLag)

Set objItem = objWMIService.get(wmiQuery)

WScript.Echo objItem.GetObjectText_

If the RetrieveWMISettings.vbs script works, you have successfully tested the core WMI func
tionality. You have not, however, tested other WMI providers, only the WBEMCore provider. The
RetrieveComputerSystem.vbs script uses the Win32_ComputerSystem class. Win32_Computer-
System relies on the CIMWin32 provider, and a query to this class exercises an extremely impor
tant WMI provider. I specify the name of the computer in the variable strComputer, but because
I want to use the Get method, I must specify a particular instance of Win32_ComputerSystem,
which happens to be the local machine. When I use the WMI moniker to make a WMI connec-

298 Part V: Security and Troubleshooting
tion, I do not supply the computer name in single quotes, but contain it in a variable called str-
Computer enclosed in double quotes. When I supply a computer name for the key name
property of Win32_ComputerSystem class, the computer name must be enclosed in single
quotes. To use a single variable for both of these instances that have different requirements, I
devised the simple FunFix function and included it at the bottom of the script. This function
takes the string that is supplied to it, appends a single quote as both a prefix and a suffix, and
assigns the resultant string to be equal to the function name. This enables dual use of the
same variable name.

RetrieveComputerSystem.vbs

strComputer = "Mred1" 'name of the target computer system.

wmiNS = "\root\cimv2"

wmiQuery = "win32_ComputerSystem.name=" & funFix(strComputer)

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

Wscript.Echo myFun(wmiQuery) & objItem.getObjectText_

Function myFun(input)

Dim lstr

lstr = Len(input)

myFun = input & vbcrlf & string(lstr,"=")

End Function

Function funFix(strIN) 'computer name needs single '

funFix = "'" & strIN & "'"

End function

Obtaining Diagnostic Information
If the preceding checks do not point to an immediate solution, the next step is to obtain more
information. To do this, you have several tools at your disposal. The primary source of trou
bleshooting information is WMI logging. By changing the logging level to verbose, you can
generate a diagnostic trace of WMI events in several WMI logs.

Enabling Verbose WMI Logging

There are three logging levels for WMI: disabled, errors only, and verbose. These logging lev
els are recorded in the registry at the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Logging

A value of 0 disables all logging, a value of 1 enables errors-only logging, and a value of 2 sets
the logging level to verbose.

You can set the logging levels by using the WMI Control Properties console. As shown in Fig
ure 14-4, the logging levels are displayed in the Logging tab—the same tab used to increase or
decrease the logging level. After the WMI problem is solved, it is important that you reduce

Chapter 14: Troubleshooting WMI 299
the logging level back to errors only, or the increased logging activity could cause perfor
mance problems for WMI and for all applications that rely on its services. To increase the log
ging level, follow these steps:

1. Click Start, and then click Run.

2. In the Run dialog box, type wmimgmt.msc in the Open box, and then click OK.

3. Right-click WMI Control (Local).

4. Click Properties.

5. Click the Logging tab.

6. Change the Logging Level to Verbose.

7. Increase the maximum log size (that is, set it to 256,000 or more).

8. Click OK, and then close the WMI console.

Figure 14-4 Setting WMI Logging levels

The increased logging level takes effect after the WMI service has been stopped and restarted;
no reboot is required.

Examining the WMI Log Files

The WMI log files are stored in the %SystemRoot%\System32\WBEM\Logs directory by
default. This location is configurable in the Logging tab, as shown in Figure 14-4. In addition,
the WMI log file directory is recorded in the registry at the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Logging Directory

300 Part V: Security and Troubleshooting
If you open the logs directory, you will find a number of WMI logs. Perhaps one of the chal
lenges in troubleshooting WMI is to select the correct log file in which to look for the informa
tion that is needed. Table 14-1 provides a quick listing of the most common WMI log files and
the purpose of each file.

Table 14-1 WMI Log Files and Their Purposes

Log File Purpose

Dsprovider.log Trace information and error messages for the Directory Services provider

Framework.log	 Trace information and error messages for the provider framework and the
Win32 provider

Mofcomp.log	 Compilation details from the MOF compiler, including mofcomp failures
during setup

Ntevt.log Trace messages from the Event Log provider

Setup.log Reports on MOF files that failed to load during the setup process

Viewprovider.log Trace information from the View provider

Wbemcore.log Logging from the Wbemcore provider

Wbemess.log Log entries related to events

Wbemprox.log Trace information for the WMI proxy server; remote logons

Winmgmt.log Trace information that is typically not used for diagnostics

Wmiadap.log Error messages related to the AutoDiscovery/AutoPurge (ADAP) process

Wmiprov.log	 Management data and events from WMI-enabled Windows Driver Model
(WDM) drivers; hardware

Your computer system might not have all these log files. Some of the providers have their own
procedure for configuring logging levels. For example, the View provider requires adding a
registry key to the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\

PROVIDERS\Logging\ViewProvider\Level

Once the registry key is added, you use the same 0, 1, 2 values to configure no logging, error-
only logging, or verbose logging, respectively. This works the same as setting the overall WMI
logging level.

The key WMI log files that you will probably view the most are the following:

■ Wbemcore.log

■ Mofcomp.log

■ Wbemprox.log

Chapter 14: Troubleshooting WMI 301
Use the Date When I am troubleshooting a WMI problem, once I bump up the diagnostic
logging level, I then try to reproduce the problem. If I am successful in reproducing the prob
lem, I note the time, open the WMI logging directory, and sort by time. Sometimes, if I am
lucky, I will find a log file with a time stamp that is very nearly the time I noted when I was able
to reproduce the error. Also, I like to use the VBScript Now function in my script that is gener
ating the error because it will give me a time stamp I can refer back to when I am analyzing a
diagnostic log file. If you follow this simple procedure, you can easily eliminate having to
review more than half of the WMI log files in troubleshooting because they were not updated
around the same time as when you reproduced the error.

Using the Err Tool

As you look through the WMI log files, you will quickly see that they are filled with strange
numbers. The Err.exe tool is sometimes called the Microsoft Exchange Server Error Code
Look-Up tool, but it is much more than that. It pulls error codes from header files installed on
your computer. At home on my computer that runs Windows XP, Err.exe can supply informa
tion on nearly 20,000 error messages that come from more than 170 different sources—and I
don’t even have Exchange Server installed at home! You can download the Err.exe tool for free
from the Microsoft Download Center (http://www.microsoft.com/downloads). If you do a
search for “Exchange Server Error Code,” it is easy to find. You use the Err.exe tool in Lab 28
when you troubleshoot some WMI script problems. The Err.exe tool is a single executable and
does not need to be installed, which means it can easily be copied to any machine. Once the
downloaded file has been extracted, you copy it to an easily accessed location on your
machine. To use the Err.exe tool type err (if it is in your path, or change to the directory con
taining the Err.exe tool) and supply an error number. An example of this is shown here:

C:\Utils>err 0x80041003

The tool will then return every match it has for the error number, which can be only one item
or might be many, depending on the number. You should always look for a source that is
related to what you are troubleshooting. For example, in the following output, two sources
generate error 0x80041003. But as you are troubleshooting a WMI problem, you choose the
meaning access denied because it is generated from Wbemcli.h. You choose this meaning
from the Err.exe output because Wbemcli looks similar to Wbem client—which sounds like an
application that is using WMI.

for hex 0x80041003 / decimal -2147217405 :

REC_E_TOODIFFERENT reconcil.h

WBEM_E_ACCESS_DENIED wbemcli.h

2 matches found for "0x80041003"

302 Part V: Security and Troubleshooting
Using Mofcomp.exe

Mofcomp.exe is a tool that is used to compile MOF files. You use Mofcomp.exe in Lab 29. Basi
cally, you will need to use Mofcomp.exe at two times. If you have a MOF file you need in WMI,
you must run Mofcomp.exe to add the MOF file to the repository. You would use Mof
comp.exe in these situations to add additional functionality to WMI. Some applications do
not register themselves with WMI for autorecovery, and if you ever delete the repository, you
must recompile those MOF files back into WMI after rebuilding the repository. In either case,
the syntax is the same. If you look at the number of switches listed for Mofcomp.exe, it looks
like a rather complicated tool:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

usage: mofcomp [-check] [-N:<Path>]

[-class:updateonly|-class:createonly]

[-instance:updateonly|-instance:createonly]

[-B:<filename>] [-P:<Password>] [-U:<UserName>]

[-A:<Authority>] [-WMI] [-AUTORECOVER]

[-MOF:<path>] [-MFL:<path>] [-AMENDMENT:<Locale>]

[-ER:<ResourceName>] [-L:<ResourceLocale>]

<MOF filename>

-check

-N:<path>

-class:updateonly

-class:safeupdate

-class:forceupdate

-class:createonly

-instance:updateonly

-instance:createonly

-U:<UserName>

-P:<Password>

-A:<Authority>

Syntax check only

Load into this namespace by default

Do not create new classes

Update unless conflicts exist

Update resolving conflicts if possible

Do not change existing classes

Do not create new instances

Do not change existing instances

User Name

Login password

Example: NTLMDOMAIN:Domain

-B:<destination filename> Creates a binary MOF file, does not add to DB

-WMI Do Windows Driver Model (WDM) checks, requires -B switch

-AUTORECOVER Adds MOF to list of files compiled during DB recovery

-Amendment:<LOCALE> splits MOF into language neutral and specific versions

where locale is of the form "MS_4??"

-MOF:<path> name of the language neutral output

-MFL:<path> name of the language specific output

-ER:<ResourceName> extracts binary mof from named resource

-L:<ResourceLocale> optional specific locale number when using -ER switch

Example c:>mofcomp -N:root\default yourmof.mof

Most of the time, you will not need any of these switches. In its most basic form, the MOF file
tells WMI where to compile the class, namespace, or instance of an event provider. Using Mof
comp.exe in this fashion requires only that you type mofcomp mymof.mof with no switches.
Of course, Mymof.mof must be the name of the MOF file you are trying to compile.

Chapter 14: Troubleshooting WMI 303
The next most common Mofcomp command is one in which you must specify the namespace
into which the MOF file will be compiled. This is as follows:

C:\mofcomp –N:root\myNameSpace myMofFile.mof

Using WMIchk

WMIchk.exe is a tool that was developed by Microsoft Premier Support Services to aid admin
istrators in quickly gathering all the information they need to perform initial troubleshooting
of WMI configuration problems. The amount of information supplied by this tool can save
you hours of information gathering. It is included in the WMIcheck folder on the CD accom
panying this book. To use the WMIchk.exe tool you, open a CMD prompt and type the follow
ing command:

C:\>wmichk >wmiChk.txt

Open the WmiChk.txt file in Notepad. Some of the items reported by this program are listed
here:

■	 WMI settings—Registry settings for WMI, including default namespace, logging levels,
and log file sizes

■ Operating system version and service pack level

■ Software installed on the computer

■ Services and processes running on the computer

■ A listing of namespaces, providers, and event filters defined on the computer

General WMI Troubleshooting Steps
If you determine that there is in fact a problem with WMI, you must consider several steps:

■	 DCOM security WMI uses DCOM. Changes in DCOM security settings might pre-
vent WMI from working properly.

■	 Service settings The Windows Management Instrumentation service must be run
ning for WMI to work. If this service is disabled, WMI will not work. The Windows Man
agement Instrumentation service must log on with local system privileges. If this
account is changed, WMI will not have the permissions needed to operate properly.

■	 Module registration The basic WMI service is very robust. Because of the flexible
nature of WMI, many software vendors use it to provide management of everything from
applications to hardware monitoring. Often, special modules are required to be regis
tered. You can use the WMI Check tool (WMIchk.exe) to report on the state of these
modules. If the application is not working and the modules are not registered, you
might need to reinstall the application; at a minimum, the modules must be registered.

304 Part V: Security and Troubleshooting
■	 Rebuilding the WBEM repository Rebuilding the WMI repository should be the last
step—not the first step—in troubleshooting WMI. It is easy to do. You stop the WMI ser
vice, delete the database, and restart the database. Make sure you have a backup of the
WMI database prior to deleting the database. But if this does not fix the problem, what
do you do? If rebuilding does not solve the problem and you have custom settings, you
can always perform a restoration.

Summary
In this chapter, we looked at troubleshooting WMI-related issues on both local computers and
remote computers. We examined several tools that can help in diagnostic attempts. We dis
cussed the most fundamental tool to use in troubleshooting WMI issues, the WMI Control
tool. We discussed using the Windows Management Instrumentation Tester tool and several
scripts to exercise WMI functionality.

Quiz Yourself
Q: What are two tools you can use to see whether WMI is accepting connections?

A: The two tools you can use to see whether WMI is accepting connections are the WMI
Control tool and Wbemtest.exe.

Q: If you want to produce a list of WMI classes in a namespace, choose a class, and
see a sample WMI script produced that you can run to test WMI, what tool would
you use?

A: If you need to produce a list of WMI classes in a namespace, choose a class, and see a
sample WMI script produced that you can run to test WMI, you would use Scriptomatic.

Q: If you want to test user credentials for a WMI connection on a remote computer,
which tool can you use?

A: If you need to test user credentials for a WMI connection on a remote computer, you
can use Wbemtest.exe.

Q: If you receive a strange error number in the event log and you need to look up the
meaning quickly and easily, which tool can you use?

A: If you receive a strange error number in the event log and you need to look up the
meaning quickly and easily, you can use Err.exe to translate the error number into some-
thing a bit more meaningful.

Q: If you need to compile a MOF file into the repository, which tool can you use?

A: If you need to compile a MOF file into the repository, you can use Mofcomp.exe.

Chapter 14: Troubleshooting WMI 305
On Your Own

Lab 28 Working with Logging

In this lab, you will use WMI logging capabilities to assist you in troubleshooting a scripting
problem. To do this, you will increase the logging level to verbose and run two scripts that
have a few problems in them. You will conclude the lab by running a good script and compar
ing the information that is logged from this script with the results from running the bad
scripts.

1. First you must increase the WMI logging level. Click Start, and then click Run.

2. In the Open dialog box, type wmimgmt.msc, and then click OK.

3. Right-click WMI Control (Local).

4. Click Properties.

5. Click the Logging tab.

6. Change Logging Level to Verbose.

7. Increase the maximum log size (that is, set it to 256,000 or more).

8. Click OK, and close the WMI console.

9. Open the WMI logging directory in Windows Explorer. The directory is listed here:

C:\WINDOWS\system32\wbem\Logs

10. Sort the file view by date; you can do this by clicking the Date Modified tab at the top of
the Date column. Ensure that the most recent dates are listed at the top.

11. Open the BadScript1.vbs script and run it. (Don’t worry, it will not break anything.) Do
not close the script output window. You will need the time stamp that is returned from
the Now function.

12. Make a note of the exact date and time when the script completed.

13. Go to the WMI log file directory and press F5 to refresh the view of the file dates. Exam
ine the file dates closely. Do you see any that match (or are very close) to the time stamp
produced by running BadScript1.vbs? You should see at least three files with time
stamps very near the time indicated by running the BadScript1.vbs. The three files
should be WinMgmt.log, Wbemprox.log, and WbemCore.log.

14. If you do not see any recent files with recent Date Modified time stamps, you might need
to refresh the folder view by pressing F5 again. If you still do not see any log files with an
appropriate Date Modified time stamp, go back and double-check to ensure the verbose
WMI logging level is set properly. If you are using an operating system earlier than Win
dows XP, you will need to restart the WMI service for the logging level change to take
effect. Windows XP and Windows Server 2003 dynamically apply the changes.

306 Part V: Security and Troubleshooting
15. Once you have found the log files, open WinMgmt.log by using Notepad and scroll to
the bottom of the file. Look for the time stamp that matches (or at least is within a few
seconds of the time produced by BadScript1.vbs). You will see some errors that look
similar to the following:

(Sat Jul 30 06:41:16 2005.36668000) : Got a provider can unload event

(Sat Jul 30 06:41:46 2005.36698000) : Got a TIMEOUT work item

(Sat Jul 30 06:41:46 2005.36698000) : Got a FinalCoreShutdown work item

(Sat Jul 30 06:41:59 2005.36710921) : CForwardFactory::CreateInstance

(Sat Jul 30 06:42:01 2005.36713000) : Got a provider can unload event

16. Open the Wbemprox.log file using Notepad and scroll to the bottom of the file. Again
look for a close time stamp. You will see some errors that look similar to the following:

(Sat Jul 30 06:41:59 2005.36710921) : Using the principal -RPCSS/

Acapulco.NWTraders.MSFT-

(Sat Jul 30 06:41:59 2005.36710921) : ConnectViaDCOM, CoCreateInstanceEx resulted in h

r = 0x0

(Sat Jul 30 06:41:59 2005.36710921) : NTLMLogin resulted in hr = 0x8004100e

17. Once you find the NTLMLogin resulted in line, note that it says the hr = 0x8004100e. This
is the result code that is returned from trying to connect to WMI. If you look up the
error 0x8004100e using Err.exe, you might be able to find more information.

18. Open a command prompt window, and change to the directory in which you have
Err.exe installed. Type the following command:

Err 0x8004100e

19. Examine the output from Err.exe. The output looks like the following:

C:\Utils>err 0x8004100e

for hex 0x8004100e / decimal -2147217394 :

WBEM_E_INVALID_NAMESPACE wbemcli.h

1 matches found for "0x8004100e"

20. From the output you can see that part of the problem is related to an invalid namespace.

21. Open the WbemCore.log file and find the time stamp close to when you ran the
BadScript1.vbs. You will find an entry that looks similar to the one listed here:

Sat Jul 30 06:41:59 2005.36710921) : CALL ConnectionLogin::NTLMLogin

wszNetworkResource = \\.\root\cimv1

pPreferredLocale = (null)

lFlags = 0x0

(Sat Jul 30 06:41:59 2005.36710921) : DCOM connection from NWtraders\LondonAdmin at au

thentiction level Privacy, AuthnSvc = 10, AuthzSvc = 0, Capabilities = 0

(Sat Jul 30 06:42:01 2005.36713000) : + DllCanUnloadNow()

(Sat Jul 30 06:42:01 2005.36713000) : - DllCanUnloadNow() S_FALSE

(Sat Jul 30 06:42:01 2005.36713000) : + DllCanUnloadNow()

(Sat Jul 30 06:42:01 2005.36713000) : - DllCanUnloadNow() S_FALSE

Chapter 14: Troubleshooting WMI 307
22. By examining the output, can you determine the problem with the script? Can you see
the reason for the failed login reported in the Wbemprox.log file? Do you see why the
error that was reported was invalid namespace? WMI is unable to authenticate a user
against a WMI namespace that does not exist.

23. Run the BadScript2.vbs script. Retain the time stamp from the script.

24. Open the WinMgmt.log file, and locate the time that is closest to the time stamp
retrieved from running BadScript2.vbs. The error messages should appear near the bot
tom of the script. Compare the results from BadScript1.vbs in the WinMgmt.log file with
the results from BadScript2.vbs. What is the difference between the two results? The
BadScript2.vbs script should not record any errors in the WinMgmt.log file. The entry
from BadScript2.vbs should look like the following:

(Sat Jul 30 07:39:35 2005.40167562) : CForwardFactory::CreateInstance

25. Open Wbemprox.log and locate the entries closest to the time stamp retrieved from
BadScript2.vbs. The entries should be near the bottom of the file. Do you find any errors
listed in the Wbemprox.log file? No.

26. Compare the results in Wbemprox.log from BadScript2.vbs to the results generated by
BadScript1.vbs. Are there any differences? Yes. The following line was generated by
BadScript1.vbs but was not generated by BadScript2.vbs:

(Sat Jul 30 06:41:59 2005.36710921) : NTLMLogin resulted in hr = 0x8004100e

27. What does the absence of an error here mean? It indicates that the NTLMLogin opera
tion succeeded. The connection to root\cimv2 was successful.

28. Open the WbemCore.log file, and find the time stamp from the BadScript2.vbs run. It
should be near the bottom. Compare the results from running BadScript2.vbs to the
results from running BadScript1.vbs in the log file. Notice there are far more entries in
the log file. You should find entries that look similar to the following:

(Sat Jul 30 07:39:35 2005.40167562) : CALL ConnectionLogin::NTLMLogin

wszNetworkResource = \\.\root\cimv2

pPreferredLocale = (null)

lFlags = 0x0

(Sat Jul 30 07:39:35 2005.40167562) : DCOM connection from NWTRADERS\LondonAdmin at au

thentiction level Privacy, AuthnSvc = 10, AuthzSvc = 0, Capabilities = 0

(Sat Jul 30 07:39:35 2005.40167562) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = WQL

BSTR Query = Select * from win32_Processer

IEnumWbemClassObject **pEnum = 0x28FD0C8

(Sat Jul 30 07:39:35 2005.40167562) : CALL CWbemNamespace::ExecQueryAsync

BSTR QueryFormat = WQL

BSTR Query = Select * from win32_Processer

IWbemObjectSink* pHandler = 0x0

(Sat Jul 30 07:39:35 2005.40167562) : STARTING a main queue thread 548 for a total of

1

(Sat Jul 30 07:39:35 2005.40167578) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = Wql

308 Part V: Security and Troubleshooting
BSTR Query = Select * from __ClassProviderRegistration

IEnumWbemClassObject **pEnum = 0xF7F9C0

(Sat Jul 30 07:39:35 2005.40167578) : CALL CWbemNamespace::ExecQueryAsync

BSTR QueryFormat = Wql

BSTR Query = Select * from __ClassProviderRegistration

IWbemObjectSink* pHandler = 0x0

(Sat Jul 30 07:39:35 2005.40167578) : STARTING a main queue thread 2032 for a total of

2

(Sat Jul 30 07:39:47 2005.40179578) : STOPPING a main queue thread 548 for a total of

1

(Sat Jul 30 07:39:47 2005.40179578) : STOPPING a main queue thread 2032 for a total of

0

29. In examining the log file, were you able to parse a WMI Query Language (WQL) query?
Yes. This is indicated by the following line in the log file:

(Sat Jul 30 07:39:35 2005.40167562) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = WQL

BSTR Query = Select * from win32_Processer

IEnumWbemClassObject **pEnum = 0x28FD0C8

30. Did BadScript1.vbs succeed in parsing a WQL query? No. There is no entry similar to
the preceding one listed in WbemCore.log around the time the BadScript1.vbs script
ran.

31. After the query is parsed, it now tries to find the class that is referenced in the query.
Locate the entries that try to identify the class provider. It looks like the following:

(Sat Jul 30 07:39:35 2005.40167578) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = Wql

BSTR Query = Select * from __ClassProviderRegistration

IEnumWbemClassObject **pEnum = 0xF7F9C0

32. Examine the WbemCore.log file. Did the query for the class provider succeed? No.
There is no indication in the log file that the query succeeded. The next entry in the log
indicates the main thread queue stops, as shown here:

(Sat Jul 30 07:39:47 2005.40179578) : STOPPING a main queue thread 548 for a total of

1

33. To compare your results from bad scripts with the results of a good script, run the
GoodScript1.vbs script. Pay attention to the script complete time stamp.

34. Open WinMgmt.log, and find the time stamp from running GoodScript1.vbs. Compare
your results from running GoodScript1.vbs with the results from running
BadScript2.vbs. They are similar.

35. Open Wbemprox.log, find the time stamp from running GoodScript1.vbs. Compare
with the results from running BadScript2.vbs. They are similar. This indicates that both
BadScript2.vbs and GoodScirpt2.vbs were able to make a connection into WMI and
have the query parsed.

Chapter 14: Troubleshooting WMI 309
36. Open WbemCore.log and compare the results from running BadScript2.vbs and the
results from running GoodScript1.vbs. What do you notice? There are far more entries
from GoodScript1.vbs. Why is this the case? The good script ran to completion.

37. Can you identify the name of the provider that supplies Win32_Processor? Yes. It is
CIMWin32.

This concludes the lab.

Lab 29 Compiling MOF Files

In this lab, you will use Mofcomp.exe to compile MOF files into the WBEM repository. You
will first create a new namespace using Mofcomp, and then you will delete that namespace.
Next you will create an instance of the active script consumer, and then you will delete the
instance of the active script consumer you created.

1.	 Copy the four MOF files in the Chapter14\Lab 29 folder to a directory you can easily
access from a command prompt window.

2. Open a command prompt window.

3.	 In the command prompt window, use Mofcomp.exe to compile Createnamespace.mof,
which will create a new namespace called MyNamespace in WMI off the root namespace.
The syntax of the command looks something like the following:

D:\>mofcomp createnamespace.mof

4. The output from this command looks like the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: createnamespace.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

5. Run the ListWMINameSpace.vbs script to confirm the namespace was created.

6.	 Now delete the namespace. In the command prompt window, use Mofcomp.exe to com
pile the Deletenamespace.mof. The command looks like the following:

D:\>mofcomp deletenamespace.mof

7. The output from the command looks like the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: deletenamespace.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

310 Part V: Security and Troubleshooting
8.	 Next create a new instance of the active script event consumer. You have a MOF file that
will write to an event log when Calc.exe is closed out. It requires a reboot to take effect.

9.	 In the command prompt window, use Mofcomp.exe to compile the Asec.mof MOF file.
This MOF file takes about a minute to compile, so do not get alarmed when it does not
compile as quickly as the two previous examples. The command to do this looks like the
following:

D:\>mofcomp asec.mof

10. When it is completed compiling, the output looks like the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: asec.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

11. Reboot your computer and launch Calc.exe. Use it for a minute or so, and perform come
calculations with it. Exit Calculator.

12. Navigate to your C drive, and you should see a text file called Asec.log. Delete the log file.
If you do not see a log file there within 5 to 10 seconds, check the Windows Application
event log for errors.

13. The last thing you need to do is to delete the instance of the active script event con
sumer. To do this, compile the DeleteAsec.mof file using Mofcomp. The command to do
this looks like the following:

D:\>mofcomp deleteasec.mof

14. If the delete is successful, you will see an output similar to the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: deleteasec.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

This concludes the lab.

P06622310.fm y, September 27, 2005 TuesdaPage 311 2:17 PM

Part VI
Appendixes

P06622310.fm y, September 27, 2005 TuesdaPage 312 2:17 PM

Appendix A

Scripting API Methods and
Properties

This appendix provides documentation for the scripting application programming interface
(API) methods and properties. These are discussed in detail in Chapter 4.

Table A-1 SWbemServices Methods

Method Meaning

AssociatorsOf� Returns a collection of objects (classes or instances) that are
associated with a specified object

AssociatorsOfAsync� Asynchronously returns a collection of objects (classes or in-
stances) that are associated with a specified object

Delete Deletes an instance or class

DeleteAsync Asynchronously deletes an instance or class

ExecMethod Executes an object method

ExecMethodAsync Asynchronously executes a method

ExecNotificationQuery Executes a query to receive events

ExecNotificationQueryAsync Asynchronously executes a query to receive events

ExecQuery � Executes a query to retrieve a collection of objects (classes
or instances)

ExecQueryAsync� Asynchronously executes a query to retrieve a collection of
objects (classes or instances)

Get Retrieves a class or instance

GetAsync Asynchronously retrieves a class or instance

InstancesOf Returns a collection of instances of a specified class

InstancesOfAsync� Asynchronously returns a collection of instances of a speci
fied class

ReferencesTo� Returns a collection of objects (classes or instances) that
refer to a single object

ReferencesToAsync� Asynchronously returns a collection of objects (classes or
instances) that refer to a single object
313

314	 Part VI: Appendixes
Table A-1 SWbemServices Methods

Method Meaning

SubclassesOf Returns a collection of subclasses of a specified class

SubclassesOfAsync� Asynchronously returns a collection of subclasses of a spec
ified class

Table A-2 SWbemObjectSet Iflags and Meanings

Flag Value Meaning

wbemFlagForwardOnly 0x20	 Returns a forward-only enumerator. Forward-
only enumerators are faster and use less mem
ory. They do not allow calls to SWbem-
Object.Clone_.

wbemFlagBidirectional 0x0 Retains pointers to objects of the enumeration
until the client releases the enumerator.

wbemFlagReturnImmediately 0x10 The call returns immediately.

wbemFlagReturnWhenComplete 0x0 Blocks until the query is complete.

wbemQueryFlagPrototype 0x2 Stops the query from executing and returns an
object that looks like a typical result.

wbemFlagUseAmendedQualifiers 0x20000 Returns class amendment data with the base
class definition.

Table A-3 Properties of SWbemObjectPath

Property Description

Authority String that defines the Authority component of the object path.

Class Name of the class that is part of the object path.

DisplayName� String that contains the path in a form that can be used as a
moniker display name.

IsClass Boolean value that indicates whether this path represents a class.

IsSingleton� Boolean value that indicates whether this path represents a sin
gleton instance.

Keys� An SWbemNamedValueSet object that contains the key value
bindings.

Locale String containing the locale for this object path.

Namespace Name of the namespace that is part of the object path.

ParentNamespace� Name of the parent of the namespace that is part of the object
path.

Path� Contains the absolute path. This is the default property of this
object.

Relpath Contains the relative path.

Security_ Used to read or change the security settings.

Server Name of the server.

Appendix A: Scripting API Methods and Properties 315
Table A-4 Methods of the SWbemNamedValueSet Object

Method Description

Add Adds an SWbemNamedValue object to the collection.

Clone Makes a copy of this SWbemNamedValueSet collection.

DeleteAll� Removes all items from the collection, making the SWbemNamed-
ValueSet object empty.

Item� Retrieves an SWbemNamedValue object from the collection. This is
the default method of the object.

Remove Removes an SWbemNamedValue object from the collection.

Table A-5 SWbemProperty Properties

Property Description

CIMType Type of this property.

IsArray Boolean value that indicates whether this property has an array type.

IsLocal Boolean value that indicates whether this is a local property.

Name Name of this property.

Origin Contains the originating class of this property.

Qualifiers_� An SWbemQualifierSet object, which is the collection of qualifiers for this
property.

Value� Actual value of this property. This is the default automation property of
this object.

Table A-6 WbemCimTypeEnum Constants

Constant Decimal Value Description

wbemCimtypeSint16 2 Signed 16-bit integer

wbemCimtypeSint32 3 Signed 32-bit integer

wbemCimtypeReal32 4 32-bit real number

wbemCimtypeReal64 5 64-bit real number

wbemCimtypeString 8 String

wbemCimtypeBoolean 11 Boolean value

wbemCimtypeObject 13 Common Information Model (CIM) object

wbemCimtypeSint8 16 Signed 8-bit integer

wbemCimtypeUint8 17 Unsigned 8-bit integer

wbemCimtypeUint16 18 Unsigned 16-bit integer

wbemCimtypeUint32 19 Unsigned 32-bit integer

wbemCimtypeSint64 20 Signed 64-bit integer

wbemCimtypeUint64 21 Unsigned 64-bit integer

wbemCimtypeDatetime 101 Date/time value

wbemCimtypeReference 102 Reference to a CIM object.

wbemCimtypeChar16 103 16-bit character

316	 Part VI: Appendixes
Table A-7 SWbemQualifierSet Methods

Method Description

Add Adds an SWbemQualifier object to the SWbemQualifierSet collection.

Item� Retrieves an SWbemQualifier object from the collection. This is the de-
fault method of this object.

Remove Removes an SWbemQualifier object from the collection.

Table A-8 SWbemQualifier Properties

Property Description

IsAmended� Boolean value that indicates whether this qualifier has been
localized using a merge operation.

IsLocal Boolean value that indicates whether this is a local qualifier.

IsOverridable� Boolean value that indicates whether this qualifier can be over-
ridden when propagated.

Name Name of this qualifier.

PropagatesToInstance� Boolean value that indicates whether this qualifier can be prop
agated to an instance.

PropagatesToSubclass� Boolean value that indicates whether this qualifier can be prop
agated to a subclass.

Value� Actual value of this qualifier. This is the default property of this
object.

Table A-9 Methods of the SWbemRefresher Object

Method Description

Add Adds a new refreshable object to the refresher object

AddEnum Adds a new enumerator to the refresher

DeleteAll Removes all items from the refresher

Item Returns a specified item from the collection in the refresher

Refresh Refreshes all items in the refresher

Remove Removes object or object set with a specified index from the refresher

Table A-10 Properties of the SWbemRefreshableItem Object

Properties Description

Index Index of the item in the refresher object

IsSet Indicates whether the item is a single object or an object set

Object The SWbemObject that represents the item

ObjectSet The SWbemObjectSet that represents the item

Refresher The SWbemRefresher object in which this item resides

Appendix B

WMI Security Constants

This appendix provides documentation for the security constants that are defined in WMI.
These constants are used throughout the book but are discussed in detail in Chapter 7.

Constant Value Meaning

wbemPrivilegeCreateToken 1 Required to create a primary token.

wbemPrivilegePrimaryToken 2 Required to assign the primary token of a pro-
cess.

wbemPrivilegeLockMemory 3 Required to lock physical pages in memory.

wbemPrivilegeIncreaseQuota 4 Required to increase the quota assigned to a
process.

wbemPrivilegeMachineAccount 5 Required to create a machine account.

wbemPrivilegeTcb 6 Identifies its holder as part of the trusted com-
puter base. Some trusted protected sub-
systems are granted this privilege.

wbemPrivilegeSecurity 7	 Required to perform a number of security-
related functions such as controlling and
viewing audit messages. This privilege identi
fies its holder as a security operator.

wbemPrivilegeTakeOwnership 8	 Required to take ownership of an object with-
out being granted discretionary access. This
privilege allows the owner value to be set only
to those values that the holder might legiti
mately assign as the owner of an object.

wbemPrivilegeLoadDriver 9 Required to load or unload a device driver.

wbemPrivilegeSystemProfile 10 Required to gather profiling information for
the entire system.

wbemPrivilegeSystemtime 11 Required to modify the system time.

wbemPrivilegeProfileSingleProcess 12 Required to gather profiling information for a
single process.

wbemPrivilegeIncreaseBasePriority 13 Required to increase the base priority of a
process.

wbemPrivilegeCreatePagefile 14 Required to create a paging file.
317

318 Part VI: Appendixes
Constant Value Meaning

wbemPrivilegeCreatePermanent 15 Required to create a permanent object.

wbemPrivilegeBackup 16 Required to perform backup operations.

wbemPrivilegeRestore 17	 Required to perform restore operations. This
privilege enables you to set any valid user or
group security identifier (SID) as the owner of
an object.

wbemPrivilegeShutdown 18 Required to shut down a local system.

wbemPrivilegeDebug 19 Required to debug a process.

wbemPrivilegeAudit 20 Required to generate audit log entries.

wbemPrivilegeSystemEnvironment 21 Required to modify the nonvolatile RAM of
systems that use this type of memory to store
configuration information.

wbemPrivilegeChangeNotify 22	 Required to receive notifications of changes
to files or directories. This privilege also causes
the system to skip all traversal access checks.
It is enabled by default for all users.

wbemPrivilegeRemoteShutdown 23 Required to shut down a system using a net-
work request.

wbemPrivilegeUndock 24 Required to remove computer from docking
station.

wbemPrivilegeSyncAgent 25 Required to synchronize directory service
data.

wbemPrivilegeEnableDelegation 26 Required to enable computer and user
accounts to be trusted for delegation.

wbemPrivilegeManageVolume 27 Required to perform volume maintenance
tasks.

Appendix C

WMI Security Privileges and
Operations

This appendix provides documentation on the use of privileged operations in WMI. This
information is supplemental to Chapter 7.

Class Name Privilege Purpose

Win32_NTLogEvent SeSecurityPrivilege For security event log

Win32_NTEventlogFile SeSecurityPrivilege, SeBackup- ClearEventlog
Privilege

SeSecurityPrivilege, SeBackup- BackupEventlog
Privilege

Win32_PageFile SeCreatePagefileNamePrivilege Create an instance

Win32_ComputerSystem SeSystemEnvironmentPrivilege SystemStartupDelay

SeSystemEnvironmentPrivilege SystemStartupOptions

SeSystemEnvironmentPrivilege SystemStartupSetting

Win32_OperatingSystem SeShutdownPrivilege Reboot

SeShutdownPrivilege Shutdown

SeShutdownPrivilege Win32ShutDown

SeSystemTimePrivilege SetDateTime

Win32_Process SeDebugPrivilege MinimumWorkingSetSize

SeDebugPrivilege MaximumWorkingSetSize

SeDebugPrivilege ExecutablePath

SeDebugPrivilege Terminate

SeAssignPrimaryTokenPrivilege, Create
SeIncreaseQuotaPrivilege

Win32_ProcessStartup Process- SeDebugPrivilege Create an instance
StartupInformation

Win32_TCPIPPrinterPort SeLoadDriverPrivilege Create an instance
319

320 Part VI: Appendixes
Class Name Privilege Purpose

Win32_SecuritySetting� SeSecurityPrivilege, SeRestore- GetSecurityDescriptor
Privilege

SeSecurityPrivilege, SeRestore- SetSecurityDescriptor
Privilege

Win32_LogicalFileSecuritySetting� SeSecurityPrivilege, SeRestore- Create an instance
Privilege

Win32_LogicalShareSecuritySetting� SeSecurityPrivilege, SeRestore- Create an instance
Privilege

Win32_PageFileSetting SeCreatePagefilePrivilege Name

CIM_ProcessExecutable SeDebugPrivilege ProcessCount

Win32_NTLogEventLog SeSecurityPrivilege Query security log

Win32_NTLogEventUser SeSecurityPrivilege Query security log

Win32_NTLogEventComputer SeSecurityPrivilege Query security log

Win32_Trustee SeSecurityPrivilege, SeRestore- SIDString
Privilege

SeSecurityPrivilege, SeRestore- SID
Privilege

SeSecurityPrivilege, SeRestore- Name
Privilege

SeSecurityPrivilege, SeRestore- SidLength
Privilege

Win32_ACE SeSecurityPrivilege, SeRestore- Domain
Privilege

SeSecurityPrivilege, SeRestore- AccessMask
Privilege

SeSecurityPrivilege, SeRestore- AceFlags
Privilege

SeSecurityPrivilege, SeRestore- AceType
Privilege

SeSecurityPrivilege, SeRestore- GuidInheritedObjectType
Privilege

SeSecurityPrivilege, SeRestore-
Privilege

GuidObjectType

Win32_SecurityDescriptor� SeSecurityPrivilege, SeRestore-
Privilege

Create an instance

Win32_Trustee Owner� SeSecurityPrivilege, SeRestore-
Privilege

Create an instance

Appendix D

Computer System Hardware
Classes

This appendix provides documentation on the computer system hardware classes. These
classes are discussed in detail in Chapter 10.

Table D-1 Cooling Device Classes

Class Properties Methods Description

Win32_Fan 22 3 Represents the properties of a
fan device

Win32_HeatPipe 20 2 Represents the properties of a
heat pipe cooling device

Win32_Refrigeration 20 2 Represents the properties of a
refrigeration device

Win32_TemperatureProbe 35 2 Represents the properties of a
temperature sensor (electronic
thermometer)

Table D-2 Input Device Classes

Class Properties Methods Description

Win32_Keyboard 23 2 Represents a keyboard

Win32_PointingDevice 33 2 Represents an input device used to
point to and select regions on the
display

Table D-3 Mass Storage Classes

Class Properties Methods Description

Win32_AutoChkSetting 4 0 Represents the settings for the auto-
check operation of a disk

Win32_CDROMDrive 48 2 Represents a CD-ROM drive

Win32_DiskDrive 49 2 Represents a physical disk drive

Win32_FloppyDrive 30 2 Manages the capabilities of a floppy
disk drive
321

322	 Part VI: Appendixes
Table D-3 Mass Storage Classes

Class Properties Methods Description

Win32_PhysicalMedia 23 0	 Represents any type of documenta
tion or storage medium

Win32_TapeDrive 40 2 Represents a tape drive

Table D-4 Motherboard, Controller, and Port Classes

Class Properties Methods Description

Win32_1394Controller 23 2	 Represents the capabilities
and management of a 1394
controller

Win32_1394ControllerDevice 7 0	 Relates the high-speed serial
bus (IEEE 1394 Firewire) con-
troller and the CIM_Logical-
Device instance connected
to it

Win32_AssociatedProcessorMemory 3 0 Relates a processor and its
cache memory

Win32_AllocatedResource 2 0 Relates a logical device to a
system resource

Win32_BaseBoard 29 1 Represents a baseboard (also
known as a motherboard or
system board)

Win32_BIOS 27 0 Represents the attributes of
the computer system’s basic
input/output system (BIOS)

Win32_Bus 21 2 Represents a physical bus

Win32_CacheMemory 53 2 Represents cache memory
(internal and external)

Win32_ControllerHasHub 7 0 Represents the hubs down-
stream from the universal
serial bus (USB) controller

Win32_DeviceBus 2 0 Relates a system bus and a
logical device using the bus

Win32_DeviceMemoryAddress 11 0 Represents a device memory
address

Win32_DeviceSettings 2 0 Relates a logical device and a
setting that can be applied
to it

Win32_DMAChannel 19 0 Represents a direct memory
access (DMA) channel

Win32_FloppyController 23 2	 Represents the capabilities
and management capacity
of a floppy disk drive con-
troller

Appendix D: Computer System Hardware Classes 323
Table D-4 Motherboard, Controller, and Port Classes

Class Properties Methods Description

Win32_IDEController 23 2 Represents the capabilities of
an Integrated Drive Electron-
ics (IDE) controller device

Win32_IDEControllerDevice 7 0 Association class that relates
an IDE controller and the
logical device

Win32_InfraredDevice 23 2 Represents the capabilities
and management of an
infrared device

Win32_IRQResource 15 0 Represents an interrupt
request (IRQ) line number

Win32_MemoryArray 39 2	 Represents the properties
of the computer system
memory array and mapped
addresses

Win32_MemoryArrayLocation 2 0	 Relates a logical memory ar
ray and the physical memory
array upon which it exists

Win32_MemoryDevice 39 2	 Represents the properties of
a computer system’s memo
ry device along with its asso
ciated mapped addresses

Win32_MemoryDeviceArray 2 0	 Relates a memory device and
the memory array in which it
resides

Win32_MemoryDeviceLocation 2 0	 Association class that relates
a memory device and the
physical memory on which it
exists

Win32_MotherboardDevice 22 2	 Represents a device that
contains the central compo
nents of the computer sys
tem

Win32_OnBoardDevice 20 0 Represents common adapter
devices built into the moth-
erboard (system board)

Win32_ParallelPort 26 2 Represents the properties of
a parallel port

Win32_PCMCIAController 23 2	 Manages the capabilities of a
Personal Computer Memory
Card International Associa
tion (PCMCIA) controller
device

324	 Part VI: Appendixes
Table D-4 Motherboard, Controller, and Port Classes

Class Properties Methods Description

Win32_PhysicalMemory 30 0	 Represents a physical mem
ory device located on a com
puter as available to the
operating system

Win32_PhysicalMemoryArray 27 1 Represents details about the
computer system’s physical
memory

Win32_PhysicalMemoryLocation 3 0 Relates an array of physical
memory to the physical
memory locations

Win32_PNPAllocatedResource 2 0 Represents an association
between logical devices and
system resources

Win32_PNPDevice 2 0	 Relates a device (known to
Configuration Manager as a
PNPEntity) and the function
it performs

Win32_PNPEntity 22 2 Represents the properties of
a Plug and Play device

Win32_PortConnector 20 0 Represents physical connec-
tion ports, such as DD-25 pin
male, Centronics, and PS/2

Win32_PortResource 11 0 Represents an input/output
(I/O) port

Win32_Processor 44 2 Represents a device capable
of interpreting a sequence of
machine instructions

Win32_SCSIController 31 2 Represents a Small Comput-
er System Interface (SCSI)
controller

Win32_SCSIControllerDevice 7 0 Relates a SCSI controller and
the logical device (disk drive)
connected to it

Win32_SerialPort 47 2 Represents a serial port

Win32_SerialPortConfiguration 29 0 Represents the settings for
data transmission on a serial
port

Win32_SerialPortSetting 2 0 Relates a serial port and its
configuration settings

Win32_SMBIOSMemory 38 2 Represents the capabilities
and management of memo-
ry-related logical devices

Appendix D: Computer System Hardware Classes 325
Table D-4 Motherboard, Controller, and Port Classes

Class Properties Methods Description

Win32_SoundDevice 23 2	 Represents the properties of
a sound device

Win32_SystemBIOS 2 0	 Relates a computer system
(including data such as start-
up properties, time zones,
boot configurations, or
administrative passwords)
and a system BIOS (services,
languages, system manage
ment properties)

Win32_SystemDriverPNPEntity 2 0	 Relates a Plug and Play de-
vice and the driver that sup-
ports the Plug and Play
device

Win32_SystemEnclosure 37 1 Represents the properties
associated with a physical
system enclosure

Win32_SystemMemoryResource 10 0 Represents a system memory
resource

Win32_SystemSlot 31 0	 Represents physical connec
tion points (including ports,
motherboard slots, and pe
ripherals) and proprietary
connections points

Win32_USBController 23 2 Manages the capabilities of a
universal serial bus (USB)
controller

Win32_USBControllerDevice 7 0 Relates a USB controller and
the CIM_LogicalDevice in-
stances connected to it

Win32_USBHub 28 3 Represents the management
characteristics of a USB hub

Table D-5 Network Device Classes

Class Properties Methods Description

Win32_NetworkAdapter 36 2 Represents a network
adapter

Win32_NetworkAdapterConfiguration 60 41 Represents the attributes
and behaviors of a net-
work adapter

Win32_NetworkAdapterSetting 2 0 Relates a network adapter
and its configuration set-
tings

326	 Part VI: Appendixes
Table D-6 Power Classes

Class Properties Methods Description

Win32_AssociatedBattery 2 0 Relates a logical device and
the battery it is using

Win32_Battery 33 2 Represents a battery con-
nected to the computer
system

Win32_CurrentProbe 35 2 Represents the properties of
a current monitoring sensor
(ammeter)

Win32_PortableBattery 36 2	 Represents the properties of
a portable battery, such as
one used for a notebook
computer

Win32_PowerManagementEvent 4 0	 Represents power manage
ment events resulting from
power state changes

Win32_UninterruptiblePowerSupply 43 2	 Represents the capabilities
and management capacity
of an uninterruptible power
supply (UPS)

Win32_VoltageProbe 35 2	 Represents the properties of
a voltage sensor (electronic
voltmeter)

Table D-7 Printing Classes

Class Properties Methods Description

Win32_DriverForDevice 2 0 Relates a printer to a printer
driver

Win32_Printer 86 9 Represents a printer device

Win32_PrinterConfiguration 33 0 Defines the configuration for a
printer device

Win32_PrinterController 7 0 Relates a printer and the local
device to which the printer is
connected

Win32_PrinterDriver 22 3 Represents the drivers for a
Win32_Printer instance

Win32_PrinterDriverDll 2 0 Relates a local printer and its
driver file (not the driver itself)

Win32_PrinterSetting 2 0 Relates a printer and its config-
uration settings

Appendix D: Computer System Hardware Classes 327
Table D-7 Printing Classes

Class Properties Methods Description

Win32_PrintJob 24 2 Represents a print job generat-
ed by a Microsoft Windows ap-
plication

Win32_TCPIPPrinterPort 17 0 Represents a Transmission Con-
trol Protocol/Internet Protocol
(TCP/IP) service access point

Table D-8 Telephony Classes

Class Properties Methods Description

Win32_POTSModem 79 2	 Represents the services and
characteristics of a Plain Old
Telephone Service (POTS)
modem

Win32_POTSModemToSerialPort 7 0	 Relates a modem and the
serial port the modem uses

Table D-9 Video and Monitor Classes

Class Properties Methods Description

Win32_DesktopMonitor 28 2	 Represents the type of monitor or
display device attached to the
computer system.

Win32_DisplayConfiguration 15 0	 Represents configuration informa
tion for the display device. This
class is obsolete. In place of this
class, use the properties in the
Win32_VideoController, Win32_
DesktopMonitor, and CIM_Video-
ControllerResolution classes.

Win32_DisplayController- 14 0 Represents the video adapter con-
Configuration figuration information. This class is

obsolete. In place of this class, use
the properties in the Win32_Video-
Controller, Win32_DesktopMonitor,
and CIM_VideoController-
Resolution classes.

Win32_VideoConfiguration 30 0	 This class has been eliminated from
Microsoft Windows XP and later
operating systems; attempts to use
it generate a fatal error. In place of
this class, use the properties in the
Win32_VideoController, Win32_
DesktopMonitor, and CIM_Video-
ControllerResolution classes.

328	 Part VI: Appendixes
Table D-9 Video and Monitor Classes

Class Properties Methods Description

Win32_VideoController 59 2 Represents the capabilities and
management capacity of the video
controller.

Win32_VideoSettings 2 0 Relates a video controller and
video settings that can be applied
to it.

Appendix E

Operating System Classes

This appendix provides documentation on the operating system classes. These classes are dis
cussed in detail in Chapter 11.

Table E-1 COM Classes

Class Properties Methods Description

Win32_ClassicCOM- 2 0 Association class. Relates a Distributed
ApplicationClasses Component Object Model (DCOM)

application and a Component Object
Model (COM) component grouped
under it

Win32_ClassicCOMClass 6 0 Instance class. Represents the properties
of a COM component

Win32_ClassicCOMClass- 2 0 Association class. Relates a COM class
Settings and the settings used to configure in-

stances of the COM class

Win32_ClientApplication- 2 0 Association class. Relates an executable
Setting and a DCOM application that contains

the DCOM configuration options for the
executable file

Win32_COMApplication 5 0 Instance class. Represents a COM appli-
cation

Win32_COMApplication- 2 0 Association class. Relates a COM com-
Classes ponent and the COM application where

it resides

Win32_COMApplication-
Settings

2 0 Association class. Relates a DCOM ap-
plication and its configuration settings

Win32_COMClass 5 0 Instance class. Represents the properties
of a COM component

Win32_ComClassAuto- 2 0 Association class. Relates a COM class
Emulator and another COM class that it automat-

ically emulates

Win32_ComClassEmulator 2 0 Association class. Relates two versions
of a COM class
329

330	 Part VI: Appendixes
Table E-1 COM Classes

Class Properties Methods Description

Win32_ComponentCategory 6 0 Instance class. Represents a component
category

Win32_COMSetting 3 0 Instance class. Represents the settings
associated with a COM component or
COM application

Win32_DCOMApplication 6 0 Instance class. Represents the properties
of a DCOM application

Win32_DCOMApplication- 2 0 Association class. Relates the
AccessAllowedSetting Win32_DCOMApplication instance and

the user security identifiers (SIDs) that
can access it

Win32_DCOMApplication- 2 0 Association class. Relates the
LaunchAllowedSetting Win32_DCOMApplication instance and

the user SIDs that can launch it

Win32_DCOMApplication- 12 0 Instance class. Represents the settings of
Setting a DCOM application

Win32_Implemented- 2 0 Association class. Relates a component
Category category and the COM class using its in-

terfaces

Table E-2 Desktop Classes

Class Properties Methods Description

Win32_Desktop 21 0 Instance class. Represents the common char-
acteristics of a user’s desktop

Win32_Environment 8 0 Instance class. Represents an environment or
system environment

Win32_TimeZone 24 0 Instance class. Represents the time zone infor-
mation

Win32_UserDesktop 2 0 Association class. Relates a user account and
desktop settings that are specific to it

Table E-3 Driver Classes

Class Properties Methods Description

Win32_DriverVXD 21 0 Instance class. Represents a virtual device
driver

Win32_SystemDriver 22 10 Instance class. Represents the system driv-
er for a base service

Appendix E: Operating System Classes 331
Table E-4 File System Classes

Class Properties Methods Description

Win32_CIMLogicalDeviceCIM- 4 0 Association class. Relates logical
DataFile devices and data files, indicating

the driver files used by the device

Win32_Directory 31 14 Represents a directory entry

Win32_DirectorySpecification 13 1 Instance class. Represents the di-
rectory layout for the product

Win32_DiskDriveToDiskPartition 2 0 Association class. Relates a disk
drive and a partition existing on
it

Win32_DiskPartition 34 2	 Instance class. Represents the
capabilities and management ca
pacity of a partitioned area of a
physical disk

Win32_DiskQuota 6 0 Association class. Tracks disk
space usage for NTFS file system
volumes

Win32_LogicalDisk 40 5 Represents a data source that re-
solves to an actual local storage
device

Win32_LogicalDiskRootDirectory 2 0 Association class. Relates a logi-
cal disk and its directory struc-
ture

Win32_LogicalDiskToPartition 4 0 Association class. Relates a logi-
cal disk drive and the disk parti-
tion on which it resides

Win32_MappedLogicalDisk 38 2 Represents network storage de-
vices that are mapped as logical
disks on the computer system

Win32_OperatingSystem- 2 0 Association class. Represents the
AutochkSetting association between a

CIM_ManagedSystemElement
instance and the settings defined
for it

Win32_QuotaSetting 9 0 Instance class. Contains setting
information for disk quotas on a
volume

Win32_ShortcutFile 34 14 Instance class. Represents files
that are shortcuts to other files,
directories, and commands

Win32_SubDirectory 2 0 Association class. Relates a direc-
tory (folder) and one of its subdi-
rectories (subfolders)

332	 Part VI: Appendixes
Table E-4 File System Classes

Class Properties Methods Description

Win32_SystemPartitions 2 0 Association class. Relates a com-
puter system and a disk partition
on that system

Win32_Volume 2 0 Instance class. Represents an area
of storage on a hard disk

Win32_VolumeQuota 2 0 Association class. Relates a vol-
ume to the per-volume quota
settings

Win32_VolumeQuotaSetting 2 0 Association class. Relates disk
quota settings with a specific disk
volume

Win32_VolumeUserQuota 2 0 Association class. Relates per-
user quotas to quota-enabled
volumes

Table E-5 Job Object Classes

Class Properties Methods Description

Win32_CollectionStatistics 2 0	 Association class. Relates a
managed system element col
lection and the class represent
ing statistical information
about the collection

Win32_LUID 2 0 Instance class. Represents a lo-
cally unique identifier (LUID)

Win32_LUIDandAttributes 2 0 Instance class. Represents a
LUID and its attributes

Win32_NamedJobObject 4 0	 Instance class. Represents a
kernel object that is used to
group processes for the sake of
controlling the life and re-
sources of the processes within
the job object

Win32_NamedJobObjectActgInfo 19 0	 Instance class. Represents the
input/output (I/O) accounting
information for a job object

Win32_NamedJobObjectLimit 2 0	 Instance class. Represents an
association between a job ob
ject and the job object limit
settings

Win32_NamedJobObjectLimitSetting 14 0 Instance class. Represents the
limit settings for a job object

Win32_NamedJobObjectProcess 2 0 Instance class. Relates a job ob-
ject and the process contained
in the job object

Appendix E: Operating System Classes 333
Table E-5 Job Object Classes

Class Properties Methods Description

Win32_NamedJobObjectSecLimit 2 0 Instance class. Relates a job ob-
ject and the job object security
limit settings

Win32_NamedJobObjectSecLimit- 7 0 Instance class. Represents the
Setting security limit settings for a job

object

Win32_NamedJobObjectStatistics 2 0	 Instance class. Represents an
association between a job ob
ject and the job object I/O ac
counting information class

Win32_SIDandAttributes 2 0 Instance class. Represents a se-
curity identifier (SID) and its at-
tributes

Win32_TokenGroups 2 0 Event class. Represents infor-
mation about the group SIDs in
an access token

Win32_TokenPrivileges 2 0 Event class. Represents infor-
mation about a set of privileg-
es for an access token

Table E-6 Memory and Page File Classes

Class Properties Methods Description

Win32_LogicalMemoryConfiguration 8 0	 Instance class. This class is obso
lete and has been replaced by
the Win32_OperatingSystem
class.

Win32_PageFile 36 14	 Instance class. Represents the
file used for handling virtual
memory file swapping

Win32_PageFileElementSetting 2 0	 Association class. Relates the
initial settings of a page file and
the state of those settings dur
ing normal use.

Win32_PageFileSetting 6 0 Instance class. Represents the
settings of a page file.

Win32_PageFileUsage 9 0 Instance class. Represents the
file used for handling virtual
memory file swapping.

Win32_SystemLogicalMemory- 2 0 Association class. This class is
Configuration obsolete because the properties

existing in the Win32_Logical-
MemoryConfiguration class
are now a part of the
Win32_OperatingSystem class.

334	 Part VI: Appendixes
Table E-7 Media and Audio Class

Class Properties Methods Description

Win32_CodecFile 34 14	 Instance class. Represents the audio or video
codec installed on the computer system

Table E-8 Networking Classes

Class Properties Methods Description

Win32_ActiveRoute 2 0 Association class. Relates the current
Internet Protocol 4 (IP4) route to the
persisted IP route table

Win32_IP4PersistedRouteTable 9 0 Instance class. Represents persisted IP
routes

Win32_IP4RouteTable 18 0 Instance class. Represents information
that governs the routing of network
data packets

Win32_IP4RouteTableEvent 2 0 Event class. Represents IP route
change events

Win32_NetworkClient 6 0 Instance class. Represents a network
client

Win32_NetworkConnection 17 0 Instance class. Represents an active
network connection

Win32_NetworkProtocol 23 0 Instance class. Represents a protocol
and its network characteristics

Win32_NTDomain 27 0 Instance class. Represents a Microsoft
Windows NT domain

Win32_PingStatus 24 0 Instance class. Represents the values
returned by the standard ping com-
mand

Win32_ProtocolBinding 3 0 Association class. Relates a system
level driver, network protocol, and
network adapter

Table E-9 Operating System Event Classes

Class Properties Methods Description

Win32_ComputerShutdownEvent 4 0 Represents computer shutdown
events

Win32_ComputerSystemEvent 3 0 Represents events related to a
computer system

Win32_DeviceChangeEvent 3 0	 Represents device change
events resulting from the addi
tion, removal, or modification of
devices on the computer system

Win32_ModuleLoadTrace 6 0	 Indicates that a process has
loaded a new module

Appendix E: Operating System Classes 335
Table E-9 Operating System Event Classes

Class Properties Methods Description

Win32_ModuleTrace 2 0 Base event for module events

Win32_ProcessStartTrace 8 0 Indicates that a new process has
started

Win32_ProcessStopTrace 8 0 Indicates that a process has ter-
minated

Win32_ProcessTrace 8 0 Base event for process events

Win32_SystemConfiguration- 3 0 Indicates that the device list on
ChangeEvent the system has been refreshed (a

device has been added or re-
moved, or the configuration
changed)

Win32_SystemTrace 2 0 Base class for all system trace
events, including module, pro-
cess, and thread traces

Win32_ThreadStartTrace 11 0 Indicates a new thread has start-
ed

Win32_ThreadStopTrace 4 0 Indicates that a thread has
stopped

Win32_ThreadTrace 4 0 Base event class for thread
events

Win32_VolumeChangeEvent 4 0	 Represents a network-mapped
drive event resulting from the
addition of a network drive let
ter or mounted drive

Table E-10 Operating System Settings Classes

Class Properties Methods Description

Win32_BootConfiguration 9 0 Instance class. Represents the
boot configuration

Win32_ComputerSystem 54 4 Instance class. Represents a
computer system

Win32_ComputerSystemProcessor 2 0	 Association class. Relates a
computer system and a pro
cessor running on that sys
tem

Win32_ComputerSystemProduct 8 0 Instance class. Represents a
product

Win32_DependentService 3 0 Association class. Relates two
interdependent base services

Win32_LoadOrderGroup 7 0	 Instance class. Represents a
group of system services that
define execution dependen
cies

336	 Part VI: Appendixes
Table E-10 Operating System Settings Classes

Class Properties Methods Description

Win32_LoadOrderGroupService- 2 0 Instance class. Represents an
Dependencies association between a base

service and a load order
group that the service de-
pends on to start running

Win32_LoadOrderGroupService- 2 0 Association class. Relates a
Members load order group and a base

service

Win32_OperatingSystem 61 4 Instance class. Represents an
installed operating system

Win32_OperatingSystemQFE 2 0	 Association class. Relates
an operating system and
product updates applied
as represented in
Win32_QuickFixEngineering

Win32_OSRecoveryConfiguration 15 0	 Instance class. Represents the
types of information that will
be gathered from memory
when the operating system
fails

Win32_QuickFixEngineering 11 0	 Instance class. Represents
system-wide Quick Fix Engi
neering (QFE) or updates
that have been applied to the
current operating system

Win32_StartupCommand 7 0	 Instance class. Represents a
command that runs auto
matically when a user logs on
to the computer system

Win32_SystemBootConfiguration 2 0 Association class. Relates a
computer system and its
boot configuration

Win32_SystemDesktop 2 0 Association class. Relates a
computer system and its
desktop configuration

Win32_SystemDevices 2 0	 Association class. Relates a
computer system and a logi
cal device installed on that
system

Win32_SystemLoadOrderGroups 2 0	 Association class. Relates a
computer system and a load
order group

Appendix E: Operating System Classes 337
Table E-10 Operating System Settings Classes

Class Properties Methods Description

Win32_SystemNetworkConnections 2 0	 Association class. Relates a
network connection and the
computer system on which it
resides

Win32_SystemOperatingSystem 3 0 Association class. Relates a
computer system and its op-
erating system

Win32_SystemProcesses 2 0 Association class. Relates a
computer system and a pro-
cess running on that system

Win32_SystemProgramGroups 2 0 Association class. Relates a
computer system and a logi-
cal program group

Win32_SystemResources 2 0	 Association class. Relates a
system resource and the
computer system on which it
resides

Win32_SystemServices 2 0	 Association class. Relates a
computer system and a ser
vice program that exists on
the system

Win32_SystemSetting 2 0	 Association class. Relates a
computer system and a gen
eral setting on that system

Win32_SystemSystemDriver 2 0	 Association class. Relates a
computer system and a sys
tem driver running on that
computer system

Win32_SystemTimeZone 2 0 Association class. Relates a
computer system and a time
zone

Win32_SystemUsers 2 0 Association class. Relates a
computer system and a user
account on that system

Table E-11 Processes Classes

Class Properties Methods Description

Win32_Process 45 6 Instance class. Represents a sequence of
events on a computer system

Win32_ProcessStartup 14 0 Instance class. Represents the startup con-
figuration of a Microsoft Windows process

Win32_Thread 22 0 Instance class. Represents a thread of exe-
cution

338	 Part VI: Appendixes
Table E-12 Registry Class

Class Properties Methods Description

Win32_Registry 8 0 Instance class. Represents the system registry

Table E-13 Scheduler Job Classes

Class Properties Methods Description

Win32_LocalTime 10 0 Instance class. Represents an instance in
time as component seconds, minutes, day
of the week, and so on

Win32_ScheduledJob 19 2 Instance class. Represents a job scheduled
using the Windows NT schedule service
(AT command)

Table E-14 Security Classes

Class Properties Methods Description

Win32_AccountSID 2 0 Association class. Relates a security
account instance with a security
descriptor instance

Win32_ACE 6 0 Instance class. Represents an ac-
cess control entry (ACE)

Win32_LogicalFileAccess 7 0	 Association class. Relates the secu
rity settings of a file/directory and
one member of its discretionary
access control list (DACL)

Win32_LogicalFileAuditing 7 0	 Association class. Relates the secu
rity settings of a file/directory and
one member of its system access
control list (SACL)

Win32_LogicalFileGroup 2 0 Association class. Relates the secu-
rity settings of a file/directory and
its group

Win32_LogicalFileOwner 2 0 Association class. Relates the secu-
rity settings of a file/directory and
its owner

Win32_LogicalFileSecuritySetting 6 2 Instance class. Represents security
settings for a logical file

Win32_LogicalShareAccess 7 0 Association class. Relates the secu-
rity settings of a share and one
member of its DACL

Win32_LogicalShareAuditing 7 0 Association class. Relates the secu-
rity settings of a share and one
member of its SACL

Win32_LogicalShareSecurity- 5 2 Instance class. Represents security
Setting settings for a logical file

Appendix E: Operating System Classes 339
Table E-14 Security Classes

Class Properties Methods Description

Win32_PrivilegesStatus 7 0 Instance class. Represents informa-
tion about privileges required to
complete an operation

Win32_SecurityDescriptor 5 0 Instance class. Represents a struc-
tural representation of a
SECURITY_DESCRIPTOR

Win32_SecuritySetting 4 2 Instance class. Represents security
settings for a managed element

Win32_SecuritySettingAccess 7 0 Instance class. Represents the
rights granted and denied to a
trustee for a given object

Win32_SecuritySettingAuditing 7 0 Instance class. Represents the au-
diting for a given trustee on a giv-
en object

Win32_SecuritySettingGroup 2 0 Association class. Relates the secu-
rity of an object and its group

Win32_SecuritySettingOfLogical- 2 0 Instance class. Represents security
File settings of a file or directory object

Win32_SecuritySettingOfLogical- 2 0 Instance class. Represents security
Share settings of a share object

Win32_SecuritySettingOfObject 2 0 Association class. Relates an object
to its security settings

Win32_SecuritySettingOwner 2 0 Association class. Relates the secu-
rity settings of an object and its
owner

Win32_SID 5 0 Instance class. Represents an arbi-
trary SID

Win32_Trustee 5 0 Instance class. Represents a trustee

Table E-15 Service Classes

Class Properties Methods Description

Win32_BaseService 22 10 Instance class. Represents executable objects
that are installed in a registry database main-
tained by the Service Control Manager

Win32_Service 25 10 Instance class. Represents a service

340	 Part VI: Appendixes
Table E-16 Share Classes

Class Properties Methods Description

Win32_ConnectionShare 2 0 Association class. Relates a shared re-
source on the computer and the connec-
tion made to the shared resource

Win32_DFSNode 25 10 Association class. Represents a root or
junction node of a domain-based or
stand-alone distributed file system (DFS)

Win32_DFSNodeTarget 25 10 Association class. Represents the relation-
ship of a DFS node to one of its targets

Win32_DFSTarget 25 10 Association class. Represents the target of
a DFS node

Win32_PrinterShare 2 0 Association class. Relates a local printer
and the share that represents it as it is
viewed over a network

Win32_ServerConnection 12 0 Instance class. Represents the connec-
tions made from a remote computer to a
shared resource on the local computer

Win32_ServerSession 13 0 Instance class. Represents the sessions
that are established with the local com-
puter by users on a remote computer

Win32_SessionConnection 2 0	 Association class. Represents an associa
tion between a session established with
the local server by a user on a remote ma-
chine and the connections that depend
on the session

Win32_SessionProcess 2 0 Association class. Represents an associa-
tion between a logon session and the pro-
cesses associated with that session

Win32_Share 10 4 Instance class. Represents a shared re-
source

Win32_ShareToDirectory 2 0 Association class. Relates a shared re-
source on the computer system and the
directory to which it is mapped

Table E-17 Start Menu Classes

Class Properties Methods Description

Win32_LogicalProgramGroup 7 0 Instance class. Represents a pro-
gram group.

Win32_LogicalProgramGroup- 2 0 Association class. Relates logical
Directory program groups (groupings on the

Start menu) and the file directories
in which they are stored.

Appendix E: Operating System Classes 341
Table E-17 Start Menu Classes

Class Properties Methods Description

Win32_LogicalProgramGroup- 5 0 Instance class. Represents an
Item element contained by a

Win32_ProgramGroup instance
that is not itself another
Win32_ProgramGroup instance.

Win32_LogicalProgramGroup- 2 0 Association class. Relates the pro-
ItemDataFile gram group items of the Start menu

and the files in which they are
stored.

Win32_ProgramGroup 6 0	 Instance class. Deprecated. Repre
sents a program group. Use the
Win32_LogicalProgramGroup class
instead.

Win32_ProgramGroupContents 2 0 Association class. Relates a program
group order and an individual pro-
gram group or item contained in it.

Win32_ProgramGroupOrItem 5 0 Instance class. Represents a logical
grouping of programs on the Pro-
grams menu on the Start menu.

Table E-18 Storage Classes

Class Properties Methods Description

Win32_ShadowBy 5 0	 Association class. Represents the
association between a shadow
copy and the provider that creates
the shadow copy

Win32_ShadowContext 5 0 Association class. Specifies how a
shadow copy is to be created, que-
ried, or deleted

Win32_ShadowCopy 5 0 Instance class. Represents a dupli-
cate copy of the original volume at
a previous time

Win32_ShadowDiffVolumeSupport 5 0 Association class. Represents an as-
sociation between a shadow copy
provider and a storage volume

Win32_ShadowFor 5 0	 Association class. Represents an as
sociation between a shadow copy
and the volume for which the shad-
ow copy is created

Win32_ShadowOn 5 0	 Association class. Represents an as
sociation between a shadow copy
and where the differential data is
written

342	 Part VI: Appendixes
Table E-18 Storage Classes

Class Properties Methods Description

Win32_ShadowProvider 5 0	 Association class. Represents a
component that creates and repre
sents volume shadow copies

Win32_ShadowStorage 5 0	 Association class. Represents an as
sociation between a shadow copy
and where the differential data is
written

Win32_ShadowVolumeSupport 5 0 Association class. Represents an as-
sociation between a shadow copy
provider with a supported volume

Win32_Volume 42 9 Instance class. Represents an area
of storage on a hard disk

Win32_VolumeUserQuota 6 0 Association class. Represents a vol-
ume to the per-volume quota set-
tings

Table E-19 User Classes

Class Properties Methods Description

Win32_Account 9 0 Instance class. Represents informa-
tion about user accounts and group
accounts

Win32_Group 9 1 Instance class. Represents data
about a group account

Win32_GroupInDomain 2 0 Association class. Identifies the
group accounts associated with a
Windows NT domain

Win32_GroupUser 2 0 Association class. Relates a group
and an account that is a member of
that group

Win32_LogonSession 9 0	 Instance class. Describes the logon
session or sessions associated with a
user logged on to Windows NT, Mi
crosoft Windows 2000, or Microsoft
Windows Server 2003

Win32_LogonSessionMappedDisk 2 0 Association class. Represents the
mapped logical disks associated
with the session

Win32_NetworkLoginProfile 32 0 Instance class. Represents the net-
work logon information of a specific
user

Win32_SystemAccount 9 0 Instance class. Represents a system
account

Appendix E: Operating System Classes 343
Table E-19 User Classes

Class Properties Methods Description

Win32_UserAccount 16 1 Instance class. Represents informa-
tion about a user account

Win32_UserInDomain 2 0 Association class. Relates a user ac-
count and a Windows NT domain

Table E-20 Event Log Classes

Class Properties Methods Description

Win32_NTEventlogFile 39 16 Instance class. Represents data stored in a
Windows NT/Windows 2000 log file

Win32_NTLogEvent 16 0 Instance class. Represents Windows NT/
Windows 2000 events

Win32_NTLogEventComputer 2 0 Association class. Relates instances of
Win32_NTLogEvent and
Win32_ComputerSystem

Win32_NTLogEventLog 2 0 Association class. Relates instances of
Win32_NTLogEvent and Win32_NT-
EventLogFile classes

Win32_NTLogEventUser 2 0 Association class. Relates instances of
Win32_NTLogEvent and Win32_User-
Account

Table E-21 Windows Product Activation Classes

Class Properties Methods Description

Win32_ComputerSystemWindows- 2 0 Association class. Relates
ProductActivationSetting instances of

Win32_ComputerSystem
and Win32_Windows-
ProductActivation

Win32_Proxy 6 1	 Instance class. Contains proper-
ties and methods to query and
configure an Internet connec
tion related to Windows Prod
uct Activation (WPA)

Win32_WindowsProductActivation 9 5	 Instance class. Contains proper-
ties and methods related to
WPA

Appendix F

Performance Monitor Classes

This appendix provides documentation on the performance monitor classes. These classes
are discussed in detail in Chapter 12.

Table F-1 Formatted Data Classes

Class Properties Methods Description

Win32_PerfFormattedData 9 0	 Abstract base class for the format
ted data classes

Win32_PerfFormattedData_ 9 0 Represents performance counters
ASP_ActiveServerPages for the Active Server Pages (ASP)

device on the computer system

Win32_PerfFormattedData_
ContentFilter_IndexingServiceFilter

12 0	 Represents performance informa
tion about an Indexing service filter

Win32_PerfFormattedData_
ContentIndex_IndexingService

20 0 Represents performance data
about the state of the Indexing ser-
vice

Win32_PerfFormattedData_Inet- 20 0 Represents counters that monitor
Info_InternetInformationServices- Microsoft Internet Information Ser-
Global vices (IIS) (the Web service and the

FTP service) as a whole

Win32_PerfFormattedData_ 17 0 Represents performance data from
ISAPISearch_HttpIndexingService the Hypertext Transfer Protocol

(HTTP) Indexing service

Win32_PerfFormattedData_
MSDTC_DistributedTransaction-
Coordinator

22 0	 Represents Microsoft Distributed
Transaction Coordinator (DTC) per
formance counters

Win32_PerfFormattedData_ 22 0 Represents global counters for the
NTFSDRV_SMTPNTFSStoreDriver Microsoft Exchange NTFS Store

driver

Win32_PerfFormattedData_ 32 0 Represents counters that monitor
PerfDisk_LogicalDisk logical partitions of a hard or fixed

disk drive

Win32_PerfFormattedData_ 30 0 Represents counters that monitor
PerfDisk_PhysicalDisk hard or fixed disk drives on a com-

puter
345

346	 Part VI: Appendixes
Table F-1 Formatted Data Classes

Class Properties Methods Description

Win32_PerfFormattedData_Perf- 29 0 Represents counters that measure
Net_Browser the rates of announcements, enu-

merations, and other browser
transmissions

Win32_PerfFormattedData_Perf- 46 0 Represents counters that monitor
Net_Redirector network connections originating at

the local computer

Win32_PerfFormattedData_Perf- 35 0 Represents counters that monitor
Net_Server communications using the Win-

dows Internet Naming Service
(WINS) Server service

Win32_PerfFormattedData_Perf- 26 0 Represents counters that monitor
Net_ServerWorkQueues the length of the queues and ob-

jects in the queues

Win32_PerfFormattedData_Perf- 26 0 Represents counters that monitor
OS_Cache the file system cache, an area of

physical memory that stores re-
cently used data as long as possible
to permit access to the data with-
out having to read from the disk

Win32_PerfFormattedData_Perf- 26 0 Represents counters that describe
OS_Memory	 the behavior of physical and virtual

memory on the computer

Win32_PerfFormattedData_Perf- 26 0 Represents calculated counts of the
OS_Objects objects contained by the operating

system such as events, mutexes,
processes, sections, semaphores,
and threads

Win32_PerfFormattedData_Perf- 26 0 Represents counters that monitor
OS_PagingFile the paging file(s) on the computer

Win32_PerfFormattedData_Perf- 26 0 Represents counters that measure
OS_Processor aspects of processor activity

Win32_PerfFormattedData_Perf- 26 0 Represents counters that apply to
OS_System more than one instance of a com-

ponent processor on the computer

Win32_PerfFormattedData_Perf- 17 0 Represents counters that monitor
Proc_FullImage_Costly the virtual address usage of images

executed by processes on the com-
puter

Win32_PerfFormattedData_Perf- 17 0 Represents counters that monitor
Proc_Image_Costly the virtual address usage of images

executed by processes on the com-
puter

Appendix F: Performance Monitor Classes 347
Table F-1 Formatted Data Classes

Class Properties Methods Description

Win32_PerfFormattedData_Perf- 22 0 Represents the accounting and
Proc_JobObject processor usage data collected by

each active named job object

Win32_PerfFormattedData_Perf- 36 0 Represents detailed performance
Proc_JobObjectDetails information about the active pro-

cesses that make up a job object

Win32_PerfFormattedData_Perf- 36 0 Represents counters that monitor
Proc_Process running application program and

system processes

Win32_PerfFormattedData_Perf- 46 0 Represent counters that monitor
Proc_ProcessAddressSpace_Costly memory allocation and use for a se-

lected process

Win32_PerfFormattedData_Perf- 21 0 Represents counters that measure
Proc_Thread aspects of thread behavior

Win32_PerfFormattedData_Perf- 10 0 Represents counters that measure
Proc_ThreadDetails_Costly aspects of thread behavior that are

difficult or time-consuming to col-
lect

Win32_PerfFormattedData_ 10 0 Represents flow statistics from the
PSched_PSchedFlow packet scheduler

Win32_PerfFormattedData_ 10 0 Represents pipe statistics from the
PSched_PSchedPipe packet scheduler

Win32_PerfFormattedData_ 10 0 Represents counters that monitor
RemoteAccess_RASPort individual Remote Access Service

(RAS) ports of the RAS device on
the computer

Win32_PerfFormattedData_ 10 0 Represents counters that combine
RemoteAccess_RASTotal values for all ports of the RAS de-

vice on the computer

Win32_PerfFormattedData_RSVP_ 10 0 Represents the number of local
ACSRSVPInterfaces network interfaces visible to and

used by the Resource Reservation
Setup Protocol (RSVP) service

Win32_PerfFormattedData_RSVP_ 10 0 Represents RSVP or ACS service
ACSRSVPService performance counters

Win32_PerfFormattedData_ 10 0 Represents counters specific to the
SMTPSVC_SMTPServer Simple Mail Transfer Protocol

(SMTP) server

Win32_PerfFormattedData_ 22 0 Represents performance statistics
Spooler_PrintQueue about a print queue

Win32_PerfFormattedData_ 18 0 Represents the telephony system
TapiSrv_Telephony

348	 Part VI: Appendixes
Table F-1 Formatted Data Classes

Class Properties Methods Description

Win32_PerfFormattedData_Tcpip_ 18 0 Represents counters that measure
ICMP the rates at which messages are

sent and received by using Internet
Control Message Protocol (ICMP)
protocols

Win32_PerfFormattedData_Tcpip_ 18 0 Represents counters that measure
IP the rates at which IP datagrams are

sent and received by using Internet
Protocol (IP)

Win32_PerfFormattedData_Tcpip_ 18 0 Represents counters that measure
NBTConnection the rates at which bytes are sent

and received over the NetBIOS over
TCP/IP (NBT) connection between
the local computer and a remote
computer

Win32_PerfFormattedData_Tcpip_ 18 0 Represents counters that measure
NetworkInterface the rates at which bytes and pack-

ets are sent and received over a
TCP/IP network connection

Win32_PerfFormattedData_Tcpip_ 18 0 Represents counters that measure
TCP the rates at which TCP segments

are sent and received by using the
Transmission Control Protocol
(TCP)

Win32_PerfFormattedData_Tcpip_ 18 0 Represents counters that measure
UDP the rates at which UDP datagrams

are sent and received by using the
User Datagram Protocol (UDP)

Win32_PerfFormattedData_ 12 0 Represents Terminal Services sum-
TermService_TerminalServices mary information

Win32_PerfFormattedData_Term- 84 0 Represents Terminal Services per-
Service_TerminalServicesSession session resource monitoring

Win32_PerfFormattedData_
W3SVC_WebService

84 0	 Represents counters specific to the
World Wide Web Publishing service

Table F-2 Raw Performance Monitor Classes

Class Properties Methods Description

Win32_PerfRawData 9 0 Abstract base class for all concrete
raw performance counter classes

Win32_PerfRawData_ASP_ 9 0 Represents the Active Server Pages
ActiveServerPages device on the computer system

Win32_PerfRawData_Content- 12 0 Represents performance informa-
Filter_IndexingServiceFilter tion about an Indexing service filter

Appendix F: Performance Monitor Classes 349
Table F-2 Raw Performance Monitor Classes

Class Properties Methods Description

Win32_PerfRawData_Content- 20 0 Represents performance data about
Index_IndexingService the state of the Indexing service

Win32_PerfRawData_InetInfo_ 20 0 Represents counters that monitor
InternetInformationServices- IIS (the Web service and the FTP ser-
Global vice) as a whole

Win32_PerfRawData_ISAPI- 19 0 Represents performance data from
Search_HttpIndexingService the HTTP Indexing service

Win32_PerfRawData_MSDTC_ 22 0 Represents Microsoft Distributed
DistributedTransactionCoordi- Transaction Coordinator perfor-
nator mance counters

Win32_PerfRawData_NTFS- 22 0 Represents global counters for the
DRV_SMTPNTFSStoreDriver Microsoft Exchange NTFS Store

driver

Win32_PerfRawData_PerfDisk_ 43 0 Represents counters that monitor
LogicalDisk logical partitions of a hard or fixed

disk drive

Win32_PerfRawData_PerfDisk_ 40 0 Represents counters that monitor
PhysicalDisk hard or fixed disk drives on a com-

puter

Win32_PerfRawData_PerfNet_ 29 0 Represents counters that measure
Browser the rates of announcements, enu-

merations, and other browser trans-
missions

Win32_PerfRawData_PerfNet_ 46 0 Represents counters that monitor
Redirector network connections originating at

the local computer

Win32_PerfRawData_PerfNet_ 35 0 Represents counters that monitor
Server communications using the WINS

Server service

Win32_PerfRawData_PerfNet_ 26 0 Represents counters that monitor
ServerWorkQueues the length of the queues and ob-

jects in the queues

Win32_PerfRawData_PerfOS_ 26 0 Represents counters that monitor
Cache the file system cache

Win32_PerfRawData_PerfOS_ 26 0 Represents counters that describe
Memory the behavior of physical and virtual

memory on the computer

Win32_PerfRawData_PerfOS_ 26 0 Represents calculated counts of the
Objects objects contained by the operating

system such as events, mutexes,
processes, sections, semaphores,
and threads

350	 Part VI: Appendixes
Table F-2 Raw Performance Monitor Classes

Class Properties Methods Description

Win32_PerfRawData_PerfOS_ 26 0 Represents counters that monitor
PagingFile the paging file(s) on the computer

Win32_PerfRawData_PerfOS_ 26 0 Represents counters that measure
Processor aspects of processor activity

Win32_PerfRawData_PerfOS_ 26 0 Represents counters that apply to
System more than one instance of a com-

ponent processor on the computer

Win32_PerfRawData_PerfProc_ 17 0 Represents counters that monitor
FullImage_Costly the virtual address usage of images

executed by processes on the com-
puter

Win32_PerfRawData_PerfProc_ 17 0 Represents counters that monitor
Image_Costly the virtual address usage of images

executed by processes on the com-
puter

Win32_PerfRawData_PerfProc_ 22 0 Represents the accounting and pro-
JobObject cessor usage data collected by each

active, named job object

Win32_PerfRawData_PerfProc_ 36 0 Represents detailed performance
JobObjectDetails information about the active pro-

cesses that make up a job object

Win32_PerfRawData_PerfProc_ 36 0 Represents counters that monitor
Process running application program and

system processes

Win32_PerfRawData_PerfProc_ 46 0 Represent counters that monitor
ProcessAddressSpace_Costly memory allocation and use for a se-

lected process

Win32_PerfRawData_PerfProc_ 21 0 Represents counters that measure
Thread aspects of thread behavior

Win32_PerfRawData_PerfProc_ 10 0 Represents counters that measure
ThreadDetails_Costly aspects of thread behavior that are

difficult or time-consuming to col-
lect

Win32_PerfRawData_PSched_ 10 0 Represents flow statistics from the
PSchedFlow packet scheduler

Win32_PerfRawData_PSched_ 10 0 Represents pipe statistics from the
PSchedPipe packet scheduler

Win32_PerfRawData_Remote- 10 0 Represents counters that monitor
Access_RASPort individual RAS ports of the RAS de-

vice on the computer

Win32_PerfRawData_Remote- 10 0 Represents counters that combine
Access_RASTotal values for all ports of the RAS device

on the computer

Appendix F: Performance Monitor Classes 351
Table F-2 Raw Performance Monitor Classes

Class Properties Methods Description

Win32_PerfRawData_RSVP_ 10 0 Represents the number of local net-
ACSRSVPInterfaces work interfaces visible to and used

by the RSVP service

Win32_PerfRawData_RSVP_ 10 0 Represents RSVP or ACS service per-
ACSRSVPService formance counters

Win32_PerfRawData_ 10 0 Represents the counters specific to
SMTPSVC_SMTPServer the SMTP server

Win32_PerfRawData_Spooler_ 22 0 Represents performance statistics
PrintQueue about a print queue

Win32_PerfRawData_TapiSrv_ 18 0 Represents the telephony system
Telephony

Win32_PerfRawData_Tcpip_ 18 0 Represents counters that measure
ICMP the rates at which messages are sent

and received by using ICMP proto-
cols

Win32_PerfRawData_Tcpip_IP 18 0	 Represents counters that measure
the rates at which IP datagrams are
sent and received by using IP proto
cols

Win32_PerfRawData_Tcpip_ 18 0 Represents counters that measure
NBTConnection the rates at which bytes are sent and

received over the NBT connection
between the local computer and a
remote computer

Win32_PerfRawData_Tcpip_ 18 0 Represents counters that measure
NetworkInterface the rates at which bytes and packets

are sent and received over a TCP/IP
network connection

Win32_PerfRawData_Tcpip_ 18 0 Represents counters that measure
TCP the rates at which TCP segments are

sent and received by using TCP

Win32_PerfRawData_Tcpip_ 18 0 Represents counters that measure
UDP the rates at which UDP datagrams

are sent and received by using UDP

Win32_PerfRawData_Term- 12 0 Represents Terminal Services sum-
Service_TerminalServices mary information

Win32_PerfRawData_Term- 84 0 Represents Terminal Services per-
Service_TerminalServices- session resource monitoring
Session

Win32_PerfRawData_W3SVC_ 84 0 Represents counters specific to the
WebService World Wide Web Publishing service

353

Index

Symbols
& (ampersand), line continuation, 61
, (commas), separating properties, 61
= (equal sign), comparison operators, 64
\>= (greater than or equal to sign), comparison operators, 64
\> (greater than sign), comparison operators, 64
\<= (less than or equal to sign), comparison operators, 64
\< (less than sign), comparison operators, 64
\\ (not equal), comparison operators, 64
!= (not equal to sign), comparison operators, 64
_ (underscores), line continuation, 61

A
abstract base classes, 158
abstract classes, 168–170
access rights, system security, 162
actions, 6
ActivateOnline method, 249
ActiveScriptEventConsumer class

event consumers, 111–112
properties, 112

AdapterMicrosoft.vbs, 67
Add method, privileges, 143
AddAsString method, privileges, 144
AddPrinterPort.vbs, 148
Add/Remove Snap-In command (File menu), 10
Add/Remove Snap-In dialog box, 10
Administrative tools, download Web site, 110
ampersand (&), line continuation, 61
Anonymous impersonation levels, 57
APIs (application programming interfaces), 19, 83
appendixes, v
application programming interfaces (APIs), 19, 83
applications

activation, 249
controlled shutdown, 252–253
provider managed, 20
shutdown, 250–252
startup, process classes, 233
Win32 WMI classes, 174–175
WMI infrastructure, 21–22

ASPScriptDefaultNamespace property, 181
associations, 83
Associators method, SWbemObject, 73, 94
associators of command, queries, 83–85

ASSOCIATORS OF method, schema query, 71
AssociatorsAsync method, SWbemObject, 73
AssociatorsOf method, SWbemServices, 94
AssociatorsOfLogonSession.vbs, 85
AssociatorsOfNetAdapterRequiredQualifier.vbs, 87
AssociatorsOfNetAdapterResultClass.vbs, 87
AssociatorsOfW32SystemDriver.vbs, 128
audience, ii–iii
audiovisual classes, operating systems, 229
Authority parameter, ConnectServer method, 127
Authority property, SWbemObjectPath, 74
AutoChkSetting class, 195
AutoDiscovery process, 99–100
automatic recovery, providers, 42

Autorecover MOF key manual edit, 44
installation, 42–44
Mofcomp.exe utility, 45
#pragma autorecover tag add to MOF file, 44

Autorecover MOF keys
manual edit, 44
provider autorecovery, 42

Availability property
CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

B
BackupAppLog.vbs, 143
BackupEventLog method, 247
BackupEventLogCreateFileName.vbs, 248
BackUpLastTime property, 183
backups, event logs, 247–248
bandwidth, performance-counter classes,

256–257
base classes, 158
BaseBoard class, 164
BaseService class, 240
batteries

portable, 205–207
power classes, 204–205

Battery class, 205

Z08I622310.fm Page 353 Wednesday, September 28, 2005 2:07 AM

354

C
Caption property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

Category property, NTEventLogEventConsumer class, 114
CDDriveInfo.vbs, 195
CDROMDrive class, 195
CD-ROMs

book companion, 19, v–vi
drives, system requirements, vi
Win32_CDROMDrive class, 195

Change Managed Computer dialog box, 10, 29
Change_PageFileSetting.vbs, 228
ChangeSystemStartUp.vbs, 149
CIM (Common Information Model), 11

classes, 163–164
describing objects, 11

classes, 16–19
namespaces, 12–14
providers, 15–16

DMTF classes, 165–167
CIM_Card.vbs, 163
CIM_MonitorResolution class, 165–167
cimMonitorResolution.vbs, 165
CIMOM (Common Information Model Object Manager), 23,

39–41
CIMOMIdentification class, 159
CimomIdentification.vbs, 159
CIM_pointingDevice class, 16–17
CIM_TemperatureSensor class, 191
CIMType property, SWbemProperty object, 95
CIM_UserDevice class, properties, 18
Class property

queries, 81
SWbemObjectPath, 74

classcomparison.xls file, companion CD, 19
ClassCreationEvent class, 69
ClassDefsOnly keyword, Where clause, 86
ClassDeletionEvent class, 69
classes, 157, iv. See also individual classes

abstract, 168–170
CIM (Common Information Model), 16–19, 163–167
event consumers, 109

ActiveScriptEventConsumer class, 111–112
binding filter to consumer, 110–111
CommandLineEventConsumer class, 115
filter, 110
instance, 109–110
LogFileEventConsumer class, 114
NTEventLogEventConsumer class, 114
queries, 110

events, 69, 115
hardware, 189

cooling devices, 189–191
input devices, 192–193
mass storage, 194
monitors, 212–214
networks, 199–202
Port classes, 198
power, 204–207
printing, 207–211
telephony, 211–212
video, 212–214

lab exercise, 170–172
operating systems, 221

COM (Component Object Model), 221–222
desktop, 222–223
driver classes, 223
files systems, 224–225
job objects, 226–227

system, 157–158
abstract base classes, 158
SystemSecurity class, 159–163
use as base class, 158
WMI version identification, 159

Win32 WMI, 173
applications, 174–175
MSI installer provider, 179–180
services management, 181–183
software, 176–178

ClassicComClass class, 221–222
ClassicComClass.vbs, 222
ClassModificationEvent class, 69
ClearEventLog method, 247
ClearEventLog.vbs, 148
Clone method

SWbemLastError object, 91
SWbemObject, 73

Code Creator, vi
codec retrieving, 229
CodecFile class, 229
collections, privileges, 141–142
COM (Component Object Model), 19, 221–222
COM APIs, 19
CommandLineEventConsumer class, event consumers, 115
commands

associators of, queries, 83–85
File menu, Add/Remove Snap-In, 10
references of, queries, 85–86

commas (,), separating properties, 61

Caption property

Z08I622310.fm Page 354 Wednesday, September 28, 2005 2:07 AM

355

Common Information Model (CIM), 11
classes, 163–164
describing objects, 11

classes, 16–19
namespaces, 12–14
providers, 15–16

DMTF classes, 165–167
Common Information Model Object Manager (CIMOM), 23,

39–41
common privileges, 147
companion CD, v–vi

classcomparison.xls file, 19
CompareTo method

SWbemLastError object, 91
SWbemObject, 73

comparison operators, Where clause, 64–65
Component Object Model (COM), 19, 221–222
compound Where clause, 66–67
computer names, defaults, 58
ComputerSystem class, 61
ConfigManagerErrorCode property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

ConfigManagerUserConfig property
CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

configuration
CIMOM (Common Information Model Object Manager),

39–41
Control snap-in, 29–30
logging, 30–32
providers, 41–45
registry settings

Enabled key, 36–37
LogSecurityFailures value, 37
LogSecuritySuccesses value, 38–39
Remote value, 39

repository
backup, 32–33
restoring, 33–35

target of operations change, 35
WIN32_WMISetting class, 45

ConfigureAndLaunchApp.vbs, 233
ConnectServer method, 125, 297

default change, 126
lab, 134–136
omitting fields, 127–133

ConnectServerWin32_NetworkProtocol.vbs, 124
ConsumerFailureEvent class, 69

consumers
events, 109

ActiveScriptEventConsumer class, 111–112
binding filter to consumer, 110–111
CommandLineEventConsumer class, 115
filter, 110
instance, 109–110
LogFileEventConsumer class, 114
NTEventLogEventConsumer class, 114
queries, 110

failed event, 117
Control Properties console

local WMI services testing, 292–293
namespace creating, 286–288
namespace security modification, 277

Control snap-in, 29–30, 35
Control tool, testing remote WMI service, 296
cooked performance-counter classes. See performance-

counter classes
cooling devices, hardware classes, 189–190

Win32_Fan class, 190
Win32_TemperatureProbe class, 191

Create method, application startup, 233
CreateAService.vbs, 242
CreateObject command, 108, 258
CreatePermanentEventRunScript.vbs, 112
CreationClassName property, 164

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

CreatorSID property, ActiveScriptEventConsumer class, 112
credentials, alternate, 136–137
current users, registry settings, 36
CurrentBandwidth.vbs, 257
CurrentTime class, 235

D
data

Get method inventory of type, 101
inventory types, 101
queries, 55, 59

DataFile class, 229
DCOM (Distributed Component Object Model)

operating system classes, 221–222
troubleshooting WMI, 303

Default Impersonation Level, 58
Default Namespace, 58
defaults, queries, 58
DefragAnalysis method, 245
Delegate impersonation levels, 57

Delegate impersonation levels

Z08I622310.fm Page 355 Wednesday, September 28, 2005 2:07 AM

356

Delete method, SWbemObject, 73
DeleteAll method, privileges, 145–146
DeleteAllSWbemPrivileges.vbs, 146
DeleteAService.vbs, 242
DeleteAsync method, SWbemObject, 73
dependencies, 293
Derivation property, SWbemObject, 73
Description property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

Desktop class, 222
desktop classes, 222–223
Desktop Management Interface (DMI), 11
Desktop Management Task Force (DMTF), 10, 11
DesktopMonitor class, 212
DeviceID property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

DeviceInterface property, WIN32_PointingDevice class, 18
dialog boxes

Add/Remove Snap-In, 10
Change Managed Computer, 10, 29
Management And Monitoring Tools, 179
Open, 33
Run, 10
Security For, 160
WMI Control Properties, 10
WMI Security, 160

Directory class, 224–225
Directory services provider, 32
DirectorySpecification class, 224
Disabled level, logging, 30
DiskDrive class, 196
disks

Win32_AutoChkSetting class, 195
Win32_DiskDrive class, 196

DisplayConfiguration class, 212
DisplayControllerConfiguration class, 212
DisplayMOF.vbs, 91
DisplayName property

SWbemObjectPath, 74
SWbemPrivilege object, 142

DisplaySecurityDescriptor.vbs, 160
DisplayShortCuts.vbs, 175
DisplayWMISettings.vbs, 181
DisplayWPAStatus.vbs, 249
Distributed Component Object Model (DCOM)

operating system classes, 221–222
troubleshooting WMI, 303

DMI (Desktop Management Interface), 11
DMTF (Desktop Management Task Force), 10, 11

CIM classes, 165–167
DoubleSpeedThreshold property, WIN32_PointingDevice

class, 18
DriverForDevice class, 207–208
drivers, operating system classes, 223
DriverVXD class, 223
Dsprovider.log file, 300
DVD-ROMs drives, system requirements, vi
dynamic classes, CIMOM (Common Information Model

Object Manager), 39

E
eBook, companion CD, v
e-mail, SMTPEventConsumer, 113
empty classes, SWbemObject object, 92
Enabled key, registry settings, 36–37
endpoints, 83
Environment class, 223
equal sign (=), comparison operators, 64
Err.exe tool, troubleshooting WMI, 301
ErrorCleared property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

ErrorDescript property, CIM_pointingDevice class, 17
ErrorDescription property

CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

errors
codes

ExecNotificationQueryAsync method, 108
ExecQuery method, 89

identification, 291–292
messages

ConnectServer method, 133
onCompleted event, 96

Errors Only level, logging, 30
evaluations, 5, 7
Event log provider, 32
EventDroppedEvent class, 69
EventID property, NTEventLogEventConsumer class, 114
EventQueueOverflowEvent class, 69
events, 103

classes, 69
consumers, 109

ActiveScriptEventConsumer class, 111–112
binding filter to consumer, 110–111
CommandLineEventConsumer class, 115
filter, 110
instance, 109–110
LogFileEventConsumer class, 114
NTEventLogEventConsumer class, 114
queries, 110

Delete method

Z08I622310.fm Page 356 Wednesday, September 28, 2005 2:07 AM

357

dropped event, 117
logs, 247–248
notification support, 21
operating systems, 231
queries, 55, 68–70
SMTPEventConsumer, 113
SWbemEventSource object, 103–104

NextEvent method, 104–105
Security property, 105

SWbemServices object, 106
ExecNotificationQuery method, 106
ExecNotificationQueryAsync method, 106–109

types, 115
class events, 115
instance events, 115–116
namespace events, 116
scripts, 117

EventType property, NTEventLogEventConsumer class, 114
ExecMethod method, SWbemObject, 73
ExecMethodAsync method, SWbemObject, 73
ExecNotificationQuery method

event queries, 69
SWbemEventSource object, 103
SWbemServices object, 106

ExecNotificationQueryAsync method
error codes, 108
SWbemServices object, 106–109

execQuery method, 7
ExecQuery method

Office_ExcelVersion class, 40
queries, 88

error codes, 89
Iflags, 88
SWbemObjectSet collection, 88

SWbemServices, 94
execute, 5
exercises

companion CD, v
Lab 1, 24
Lab 2, 24–25
Lab 3, 25–27
Lab 4, 47–48
Lab 5, 48–49
Lab 6, 49–51
Lab 7, 76–77
Lab 8, 77–80
Lab 9, 99–100
Lab 10, 101
Lab 11, 117–118
Lab 12, 118–120
Lab 13, 134–136
Lab 14, 136–137

Lab 15, 151–152
Lab 16, 153
Lab 17, 168–170
Lab 18, 170–172
Lab 19, 184
Lab 20, 185–188
Lab 21, 216–219
Lab 22, 250–252
Lab 23, 252–253
Lab 24, 266–267
Lab 25, 267–269
Lab 26, 286–288
Lab 27, 288–290
Lab 28, 304–308
Lab 29, 308–310

F
Fan class, 190
File menu commands, Add/Remove Snap-In, 10
file systems, operating system classes, 224–225
filters, event consumers, 110
FilterToConsumerBinding system class, 111
FindMSIProvider.vbs, 180
floppy drives, Win32_FloppyDrive class, 196
FloppyDrive class, 196
for next command, 7
formatted performance-counter classes, 255–256

basics, 256
lab exercises, 266–267
obtaining bandwidth, 256–257

Framework.log file, 300
FreePhysicalMemory property, 59

G
Get method

inventory types of data, 101
queries, 89–90

SWbemLastError object, 90–91
SWbemObject object, 91–92
SWbemObjectPath object, 92–94
SWbemObjectSet object, 94–95
SWbemProperty object, 95
SWbemPropertySet object, 95
SWbemSink object, 96

GetAccessMask method, 281
GetAccessRightsInAllNamespaces.vbs, 279
GetAccessRights.vbs, 278
GetCallerAccessRights method, 161–163
GetCallerRights.vbs, 162
GetObject method, Office_ExcelVersion class, 40

GetObject method

Z08I622310.fm Page 357 Wednesday, September 28, 2005 2:07 AM

358

GetObjectText method
SWbemLastError object, 91
SWbemObject, 73

GetSecurityDescriptorOfNS.vbs, 280
GetSecurityDescriptorOnFolder.vbs, 239
GetWin32_CodecFile.vbs, 229
Get_Win32_Directory.vbs, 225
GetWin32_Fan.vbs, 190
GetWin32_NTDomain.vbs, 230
GetWin32_Registry.vbs, 235
GetWin32_TemperatureProbe.vbs, 191
greater than or equal to sign (\>=), comparison operators, 64
greater than sign (\>), comparison operators, 64
GroupInDomain class, 84
groups, user classes, 246

accounts, 246–247
logon sessions, 246

GroupsInDomain.vbs, 83

H
Handedness property

CIM_pointingDevice class, 17
WIN32_PointingDevice class, 18

hard disks
system requirements, vi
Win32_AutoChkSetting class, 195

hardware
classes, 189

cooling devices, 189–191
input devices, 192–193
mass storage, 194
monitors, 212–214
networks, 199–202
Port classes, 198
power, 204–207
printing, 207–211
telephony, 211–212
video, 212–214

inventory, 216–219
provider managed, 20

HardwareType property, WIN32_PointingDevice class, 18
help, vi–vii
HTA-o-matic, vi

I
Identifier property, SWbemPrivilege object, 142
Identify impersonation levels, 57
Iflags, ExecQuery method, 88
Impersonate impersonation levels, 57

impersonation levels
defaults, 58
moniker security, 57–58

InfFileName property, WIN32_PointingDevice class, 18
infrastructures, WMI, 21

location of WBEM repository, 22
retrieving from repository, 23
WBEM repository, 22

InfSection property, WIN32_PointingDevice class, 18
input devices, hardware classes, 192

Win32_Keyboard class, 192
Win32_PointingDevice class, 193

InsertionStringTemplates property,
NTEventLogEventConsumer class, 114

installation, Platform SDK (software development kit), 24
InstallDate property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

installed applications, provider managed, 20
InstanceCreationEvent class, 69
InstanceDeletionEvent class, 69
InstanceModificationEvent class, 69
InstanceModificationEvent query, server state of service

change, 70
InstanceOperationEvent class, 69
instances

event consumers, 109–110
events, 115–116

Instances method, SWbemObject, 73, 94
InstancesAsync method, SWbemObject, 73
InstancesOf method, 13

SWbemServices, 94
instrumentation, 4–5, 5–6
interfaces, APIs, 19
IP4RouteTableEvent class, 107
IS NOT operator, Where clause, 67–68
IS operator, Where clause, 65
ISA method, schema query, 71
ISA operator, queries, 82
ISA.vbs, 82
IsClass property, SWbemObjectPath, 74
IsEnabled property, SWbemPrivilege object, 142
IsLocked property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

IsSingleton property, SWbemObjectPath object, 74, 93
Item method, privileges, 145

GetObjectText method

Z08I622310.fm Page 358 Wednesday, September 28, 2005 2:07 AM

359

J–K
job objects, operating systems, 226

named, 226
resources, 227

Keyboard class, 192
keyboards, Win32_Keyboard class, 192
Keys property, SWbemObjectPath object, 74, 93
KillTimeout property, ActiveScriptEventConsumer class, 112

L
Lab 1, 24
Lab 2, 24–25
Lab 3, 25–27
Lab 4, 47–48
Lab 5, 48–49
Lab 6, 49–51
Lab 7, 76–77
Lab 8, 77–80
Lab 9, 99–100
Lab 10, 101
Lab 11, 117–118
Lab 12, 118–120
Lab 13, 134–136
Lab 14, 136–137
Lab 15, 151–152
Lab 16, 153
Lab 17, 168–170
Lab 18, 170–172
Lab 19, 184
Lab 20, 185–188
Lab 21, 216–219
Lab 22, 250–252
Lab 23, 252–253
Lab 24, 266–267
Lab 25, 267–269
Lab 26, 286–288
Lab 27, 288–290
Lab 28, 304–308
Lab 29, 308–310
lab files, companion CD, v
LastErrorCode property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

less than or equal to sign (\<=), comparison operators, 64
less than sign (\<), comparison operators, 64
ListAllSWbemPrivileges.vbs, 142
ListLogonSessions.vbs, 84
ListProcessesByName.vbs, 12
ListWMINamespace.vbs, 13
listWMIproviders.vbs, 16

LoadOrderGroup class, 232
Locale parameter, ConnectServer method, 127
Locale property, SWbemObjectPath object, 74, 93–94
LocalTime class, 235
LogFileEventConsumer class, event consumers, 114
logging

configuration, 30–32
events, 247–248
file troubleshooting, 299–301
support, 21
troubleshooting WMI, 298–299, 304–308

LoggingLevel property, 181
logical disks, raw performance-counter classes, 264
LogicalFileSecuritySetting class, 238
LogicalMemoryConfiguration class, 228
LogicalProgramGroup class, 244
LogicalProgramGroupItem class, 244
LogicalShareAccessRights.vbs, 284
LogicalShareSecuritySetting class, 283
logon sessions, user group classes, 246
LogonSession class, 84
LogonType property, 85
LogSecurityFailures value, registry settings, 37
LogSecuritySuccesses value, registry settings, 38–39
LookForInstalledPrograms.vbs, 177

M
machine levels, registry settings, 36
MachineName property, ActiveScriptEventConsumer class,

112
MakeModelUser.vbs, 61
managed objects, providers, 20–21
management, 4, 5
Management And Monitoring Tools dialog box, 179
Manufacturer property, WIN32_PointingDevice class, 18
mass storage, hardware classes, 194

Win32_AutoChkSetting class, 195
Win32_CDROMDrive class, 195
Win32_DiskDrive class, 196
Win32_FloppyDrive class, 196
Win32_PhysicalMedia class, 196–197

MaximumQueueSize property, ActiveScriptEventConsumer
class, 112

memory
devices, operating systems, 228
performance-counter classes, 262–263
system requirements, vi

MemoryStats.vbs, 263
Meta_Class.vbs, 72
metadata, CIM (Common Information Model), 11
MethodInvocationEvent class, 69

MethodInvocationEvent class

Z08I622310.fm Page 359 Wednesday, September 28, 2005 2:07 AM

360

methods. See also specific methods
ConnectServer, 125

default change, 126
lab, 134–136
omitting fields, 127–133

invocation event, 117
return codes, 7–8
SWbemLastError object, 91
SWbemLocator, 123

ConnectServer method, 125–133
object, 123–124

SWbemObject, 72–73, 94
SWbemServices, 94–95
Win32_Volume class, 245

Methods property, SWbemObject, 73
Microsoft Exchange Server Error Code Look-Up tool,

troubleshooting WMI, 301
Microsoft Management Console (MMC), 9
Microsoft Premier Support Services (PSS), 292
Microsoft Press Web site, vi
Microsoft Self-Paced Learning Guide to Windows Scripting, ii
Microsoft Web site

Microsoft Press, vi
Scriptomatic download, 4
technical support, vi

Microsoft Windows Management Instrumentation. See WMI
MMC (Microsoft Management Console), 9, 29
module registration, troubleshooting WMI, 303
Mofcomp.exe file

compiling MOF files into WBEM repository, 308–310
provider autorecovery, 42
troubleshooting WMI, 301–302

Mofcomp.log file, 300
monikers

privileges, 147–148
queries

path, 58
prefix, 56–57
security, 57–58

MonitorFileCreationEvents.vbs, 106
MonitorForProcessDeletion.vbs, 105
MonitorForShareCreation.vbs, 115
MonitorForShareDeletion.vbs, 116
monitoring storage, 245
MonitorProcessEvents.vbs, 70
MonitorProcessStartUp.vbs, 231
MonitorProcessThreads.vbs, 261
MonitorRegistryChangeEvents.vbs, 108
MonitorResolution class, 165–167
monitors

system hardware classes, 212–214
system requirements, vi

MonitorServiceChanges.vbs, 70
MonitorTime.vbs, 237
mouse

system requirements, vi
Win32_PointingDevice class, 193

MSAcpi_ThermalZoneTemperature.vbs, 125
MSI installer provider, 174, 179–180
multimedia audiovisual classes, operating systems, 229

N
Name property

ActiveScriptEventConsumer class, 112
CIM_pointingDevice class, 17
CIM_UserDevice class, 18
NTEventLogEventConsumer class, 114
SWbemPrivilege object, 142
WIN32_PointingDevice class, 18

named job objects, operating systems, 226
NamedJobObject class, 226
NamedJobObjectActgInfo class, 227
NamedJobObjectProv provider, 226
NameOfRawdataProperty property,

NTEventLogEventConsumer class, 114
NameOfUserSidProperty property,

NTEventLogEventConsumer class, 114
Namespace parameter, ConnectServer method, 127
Namespace property, SWbemObjectPath object, 74, 94
NamespaceCreationEvent class, 69
NamespaceDeletionEvent class, 69
NamespaceModificationEvent class, 69
namespaces

CIM (Common Information Model), 12–14
creating, 286–288
defaults, 58
events, 116
permission setting, 288–290
security, 273–274

defaults, 274
descriptors, 275
modifying, 274–277
scripting, 277–280

NeedADegrag.vbs, 245
NetworkAdapter class, 62, 199–200
NetworkAdapterConfiguration class, 201–202
NetworkProtocol class, 65
networks

hardware classes, 199
Win32_NetworkAdapter class, 199–200
Win32_NetworkAdapterConfiguration class, 201–202

operating systems, 230
NextEvent method, SWbemEventSource object, 104–105
not equal (), comparison operators, 64

methods

Z08I622310.fm Page 360 Wednesday, September 28, 2005 2:07 AM

361

not equal to sign (!=), comparison operators, 64
NotifyStatus class, abstract base classes, 158
NTDomain class, 230

associations of command, 84
lab exploration, 76–77

NTEventLogEventConsumer class, event consumers, 114
Ntevt.log file, 300
NTLogEvent class, 247
NTLogEventLog class, 247
NULL value, 66
NullMacAddress.vbs, 66
NumberOfButtons property

CIM_pointingDevice class, 17
WIN32_PointingDevice class, 18

NumberOfInsertionStrings property,
NTEventLogEventConsumer class, 114

O
ObjectPathProperties.vbs, 75–76
objects. See also individual objects

job, operating systems, 226–227
managed by providers, 20–21
SWbemLocator methods, 123–124
SWbemObject, 71–72
Windows Server 2003, 96–97

SWbemDateTime object, 97
SWbemObjectEx object, 97
SWbemRefresher object, 97–98
SWbemServicesEx object, 98

Windows XP, 96–97
SWbemDateTime object, 97
SWbemObjectEx object, 97
SWbemRefresher object, 97–98
SWbemServicesEx object, 98

objName variable, 6
objWbemNamedValueSet parameter, ConnectServer method,

127
objwbemNamedValueSet value, SWbemServices object, 107
objWbemSink parameter, SWbemServices object, 106
ODBC (Open Database Connectivity), 19
Office_ExcelVersion class, 40
Office_ExcelVersion.vbs, 41
onCompleted event, SWbemSink object, 96
onCompleted property, SWbemSink object, 96
onObjectPut property, SWbemSink object, 96
onObjectReady property, SWbemSink object, 96
onProgress property, SWbemSink object, 96
Open Database Connectivity (ODBC), 19
Open dialog box, 33

operating systems, 221
application activation, 249
COM classes, 221–222
desktop classes, 222–223
event logs, 247–248
events, 231
files systems, 224–225
job objects, 226

named, 226
resources, 227

memory devices, 228
monitoring storage, 245
multimedia audiovisual, 229
networks, 230
process classes, 232

application startup, 233
provider managed, 20
registry, 234–235
scheduler job class, 235–236

marking time, 236
tasks, 237–238

security classes, 238–239
GetSecurityDescriptorOnFolder.vbs, 239
reading security folder, 239

service classes, 240–241
creating service, 241–242
deleting service, 242

settings, 232
share-related classes, 242–243
Start menu classes, 244
system requirements, vi
user group classes, 246

accounts, 246–247
logon sessions, 246

OperatingSystem class, 232

P
page file sizes, setting, 151–152
PageFile class, 228
PageFileElementSetting class, 228
PageFileSetting class, 228
PageFileUsage class, 228
parameters

application startup, 233
ConnectServer method, 127

PARAMETERS class, abstract base classes, 158
ParentNamespace property, SWbemObjectPath, 74
Password parameter, ConnectServer method, 127

Password parameter

Z08I622310.fm Page 361 Wednesday, September 28, 2005 2:07 AM

362

Path property
SWbemLastError object, 91
SWbemObject, 73
SWbemObjectPath, 74

paths, moniker, 58
PercentLogicalDiskRAW.vbs, 264
PercentProcessorRaw.vbs, 264
PercentProcessorTime property, 263
PercentProcessorUtilization.vbs, 259
performance-counter classes, 221

formatted, 255–256
basics, 256
lab exercises, 266–267
obtaining bandwidth, 256–257

raw
logical disks, 264
processor utilization, 263–264

refreshing data, 258
memory utilization, 262–263
object, 258–259
process threads, 261
single counter, 259

unformatted, 267–269
performance counters, provider managed, 20
permissions

namespace, 288–290
share, 281–282

access rights, 283
mapping user rights, 284–285

PermissionsOnShare.vbs, 283
physical memory, 228
PhysicalMedia class, 196–197
Platform SDK (software development kit)

installation lab, 24
navigation lab, 25–27
return code capturing, 8
setup lab, 24–25

PNPDeviceID property
CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

pointing devices, Win32_PointingDevice class, 193
PointingDevice class, 18, 193
PointingType property

CIM_pointingDevice class, 17
WIN32_PointingDevice class, 18

Port classes, hardware classes, 198
portable batteries, power classes, 205–207
PortableBattery class, 205
PortConnector class, 198

PortConnector.vbs, 198
POTSModem class, 211
POTSModemToSerialPort class, 211
power classes, system hardware, 204

batteries, 204–205
portable batteries, 205–207

PowerManagementCapabilities property
CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

PowerManagementSupported property
CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 18

#pragma autorecover tags
add to MOF file, 44
provider autorecovery, 42

prefix, monikers, 56–57
Premier Support Services (PSS), 292
Primal Script Evaluation Version, vi
Printer class, 208
printing classes, 207

Win32_DriverForDevice class, 207–208
Win32_Printer class, 208
Win32_PrintJob class, 210
Win32_TCPIPPrinterPort class, 211

PrintJob class, 210
Privilege property, 141
privileges, 139

adding
Add method, 143
AddAsString method, 144
DeleteAll method, 145–146
Item method, 145

basics, 139–140
collections, 141–142
common, 147
removing, 146
single, 142–143
ways used

moniker, 147–148
SWbeLocator method, 148–150

PrivilegesAtSWbemLocator.vbs, 141
PrivilegesAtSWbemService.vbs, 141
Process class, 67, 232
process classes, 232

application startup, 233
Create method, 233
parameters, 233

processors, system requirements, vi

Path property

Z08I622310.fm Page 362 Wednesday, September 28, 2005 2:07 AM

363

ProcessStartUp class, 231, 232
Product class, 184
ProductSoftwareFeatures class, 82
ProgramGroup class, 244
ProgramGroupOrItem class, 244
ProgramGroups.vbs, 132
properties. See also individual properties

ActiveScriptEventConsumer class, 112
CIM_pointingDevice class, 17
CIM_UserDevice class, 18
NTEventLogEventConsumer class, 114
SWbemLastError object, 91
SWbemObject, 73
SWbemObjectPath, 74, 93–94
SWbemPrivilege, 142
SWbemSink object, 96
WIN32_PointingDevice class, 18
WIN32_Service class, 7

Properties property
SWbemLastError object, 91
SWbemObject, 73

providers, 20–21, 41–42
automatic recovery, 42

Autorecover MOF key manual edit, 44
installation, 42–44
Mofcomp.exe utility, 45
#pragma autorecover tag add to MOF file, 44

CIM (Common Information Model), 15–16
proxy servers, turning off, 89
ProxyClass class, 249
ProxyServerInfo.vbs, 90
PSS (Premier Support Services), 292
Put method, SWbemObject, 73
PutAsync method, SWbemObject, 73

Q
QuadSpeedThreshold property, WIN32_PointingDevice

class, 18
Qualifiers property

SWbemObject, 73
SWbemProperty object, 95

queries, 5, 55, iii–iv
API object scripting, 83
associators of command, 83–85
Class property, 81
data, 59
defaults, 58
event consumers, 110
events, 68–70
ExecQuery method, 88

error codes, 89
Iflags, 88
SWbemObjectSet collection, 88

Get method, 89–90
SWbemLastError object, 90–91
SWbemObject object, 91–92
SWbemObjectPath object, 92–94
SWbemObjectSet object, 94–95
SWbemProperty object, 95
SWbemPropertySet object, 95
SWbemSink object, 96

ISA operator, 82
language support, 21
moniker

path, 58
prefix, 56–57
security, 57–58

references of command, 85–88
schema, 70–71

lab exercise, 77–80
SWbemObject, 71–73
SWbemObjectPath, 74–76

Select statement, 59–60
everything from everything, 60–61
some from everything, 61

services, 6–7
defining, 7
evaluating state of service, 7

Where clause, 61–62
comparison operators, 64–65
compound, 66–67
everything from some, 62–64
IS NOT operator, 67–68
IS operator, 65–66
some from some, 65

WQL (WMI Query Language), 56
queryAndStartAService.vbs, 6
queue overflow event, 117

R
RAM, system requirements, vi
raw performance-counter classes

logical disks, 264
processor utilization, 263–264

READ_CONTROL right, GetCallerAccessRights method, 162
ReadSecurityEventLog.vbs, 144
recovering providers, 42

Autorecover MOF key manual edit, 44
installation, 42–44
Mofcomp.exe utility, 45
#pragma autorecover tag add to MOF file, 44

recovery keys, 34
recursiveListWmiNameSpace.vbs, 14
References method, SWbemObject, 94
references of command, queries, 85–88
REFERENCES OF method, schema query, 71

REFERENCES OF method

Z08I622310.fm Page 363 Wednesday, September 28, 2005 2:07 AM

364

ReferencesOfLogonSession.vbs, 86
ReferencesTo method, SWbemServices, 95
Refresh_PerfOS_Objects.vbs, 259
registration, troubleshooting WMI, 303
Registration tool, download Web site, 110
registries

operating systems, 234–235
settings

Enabled key, 36–37
LogSecurityFailures value, 37
LogSecuritySuccesses value, 38–39
Remote value, 39

Registry class, 234
RegistryKeyChangeEvent class, 108
Relpath property, SWbemObjectPath, 74
remote computers, Control snap-in connection, 35
Remote value, registry settings, 39
RemovePrivilege.vbs, 146
reporting, 6
repositories

backup, 47–48
restoring, 48–49
WBEM, 22

handing off to provider, 23
location, 22
retrieving from, 23

WMI infrastructure, 21
requiredQualifier keyword, Where clause, 86–87
Resolution property

CIM_pointingDevice class, 17
WIN32_PointingDevice class, 19

restoring, WMI repository, 48–49
resultClass keyword, Where clause, 87
RetrieveComputerSystem.vbs, 298
RetrieveWMISettings.vbs, 297
return codes, 7–8

capturing, 8
role keyword, Where clause, 88
root namespaces, 13
RoutingTableNTLM.vbs, 131
Run dialog box, 10
RunningNONautoServicesAndDescription.vbs, 126
RunningSystemDrivers.vbs, 128

S
SampleRate property, WIN32_PointingDevice class, 19
ScheduledJob class, 237–238
ScheduleNoteToRun.vbs, 238
scheduler job classes, 235–236

marking time, 236
tasks, 237–238

schemas
CIM (Common Information Model), 11
queries, 55, 70–71

lab exercise, 77–80
SWbemObject, 71–73
SWbemObjectPath, 74–76

ScriptFileName property, ActiveScriptEventConsumer class,
112

Scripting APIs, 19
ScriptingEngine property, ActiveScriptEventConsumer class,

112
ScriptingStandardConsumerSetting class, 111
Scriptomatic, 4

local WMI services testing, 294
version 2, vi

scripts
alternate credentials, 136–137
APIs, 83
companion CD, v
events, 117
interface testing, 297–298
Scriptomatic, 4
troubleshooting, 281–282

ScriptText property, ActiveScriptEventConsumer class, 112
security, iv, 273

descriptors, 274, 275
translating access, 279

inherited settings, 275–276
monikers, 57–58
namespace, 273–274

defaults, 274
modifying, 274–277
scripting, 277–280

operating systems, 238–239
GetSecurityDescriptorOnFolder.vbs, 239
reading security folder, 239

permissions
namespace, 288–290
share, 281–282, 283, 284–285

privileges, 139
adding, 143–146
basics, 139–140
collections, 141–142
common, 147
removing, 146
single, 142–143
ways used, 147–150

share permissions, 281–282
access rights, 283
mapping user rights, 284–285

support, 21
Security For dialog box, 160

ReferencesOfLogonSession.vbs

Z08I622310.fm Page 364 Wednesday, September 28, 2005 2:07 AM

365

Security property
SWbemEventSource object, 105
SWbemObject, 73
SWbemObjectPath, 74, 94

SecurityFlags parameter, ConnectServer method, 127
SecurityRelatedClass class, abstract base classes, 158
SELECT method, schema query, 71
Select statement, queries, 56, 59–60

everything from everything, 60–61
some from everything, 61

Server parameter, ConnectServer method, 127
Server property, SWbemObjectPath, 74
ServerConnection class, 243
ServerSession class, 243
Service class, 6–7, 8–9, 240
services

classes, 240–241
creating service, 241–242
deleting service, 242

dependencies, 293
management, Win32 WMI, 181–183
provider management, 20
queries, 6–7

defining, 7
evaluating state of service, 7

settings, troubleshooting WMI, 303
WMI infrastructure, 21

SetAutoCheckSetting.vbs, 195
SetProxySetting method, 89, 249
SetSecurityDescriptor.vbs, 161
Setup.log file, 300
Share class, 243
share permissions, 281–282

access rights, 283
mapping user rights, 284–285

ShareMask property, 281
share-related classes, 242–243
Share.vbs, 282
ShortCutAction class, 174
shutdown, applications, 250–253
Simple Mail Transfer Protocol (SMTP), 113
single privileges, 142–143
SMTP (Simple Mail Transfer Protocol), 113
SMTPEventConsumer, events, 113
SNMP provider, 32
software, Win32 WMI classes, 176–178
SoftwareElement class, 176–177
SoftwareFeature class, 178
SoftwareFeatures.vbs, 178
SourceName property, NTEventLogEventConsumer class,

114
specifications, CIM (Common Information Model), 11
SpecificNetworkProtocols.vbs, 65

SQL (structured query language). See WQL
Start menu classes, 244
startmode property, WIN32_Service class, 7
StartService method, 6, 7

WIN32_Service class, 8–9
state property, WIN32_Service class, 7
static classes, CIMOM (Common Information Model Object

Manager), 39
Status property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 19

StatusControl property, CIM_UserDevice class, 18
StatusInfo property

CIM_pointingDevice class, 17
WIN32_PointingDevice class, 19

StopService method, 6
storage monitoring, 245
strings, 6
structured query language (SQL). See WQL
SubClasses method, SWbemObject, 94
SubClassesOf method, SWbemServices, 95
SubDirectory class, 224
superclasses, 17–18
supplemental scripts, companion CD, v
support, technical, vi–vii
SWbemDateTime object, 97
SWbemEventSource object, 103–104

NextEvent method, 104–105
Security property, 105

SWbemLastError object, Get method, 90–91
SWbemLocator methods, 123

ConnectServer method, 125
default change, 126
omitting fields, 127–133

object, 123–124
privileges, 148–150

SWbemLocator object, privilege assignments, 141
SWbemObject object

Get method, 91–92
methods, 72–73
object, 71–72
privilege assignments, 141
properties, 73

SWbemObjectPath object, 74
Get method, 92–93

IsSingleton property, 93
Keys property, 93
Locale property, 93–94
Namespace property, 94
Security property, 94

privilege assignments, 141
SWbemObjectSet collection, ExecQuery method, 88

SWbemObjectSet collection

Z08I622310.fm Page 365 Wednesday, September 28, 2005 2:07 AM

366

SWbemObjectSet object
Get method, 94–95
privilege assignments, 141

SWbemPrivilege object, single privileges, 142–143
SWbemPrivilegeSet object, 141
SWbemProperty object, Get method, 95
SWbemPropertySet object, Get method, 95
SWbemQualifier property, SWbemProperty object, 95
SWbemRefresher object, 97–98, 258
SWbemSecurity object, 57
SWbemServices object, 57, 106

API scripting, 83
ExecNotificationQuery method, 106
ExecNotificationQueryAsync method, 106–109
privilege assignments, 141

SWbemServicesEx object, 98
SWbemSink object, Get method, 96
Synch property, WIN32_PointingDevice class, 19
system classes, 157–158

abstract base classes, 158
SystemSecurity class, 159

displaying security information, 159–160
identifying caller rights, 161–163
setting security information, 160–161

use as base class, 158
WMI version identification, 159

system hardware classes, 189
cooling devices, 189–190

Win32_Fan class, 190
Win32_TemperatureProbe class, 191

input devices, 192
Win32_Keyboard class, 192
Win32_PointingDevice class, 193

mass storage, 194
Win32_AutoChkSetting class, 195
Win32_CDROMDrive class, 195
Win32_DiskDrive class, 196
Win32_FloppyDrive class, 196
Win32_PhysicalMedia class, 196–197

monitors, 212–214
networks, 199

Win32_NetworkAdapter class, 199–200
Win32_NetworkAdapterConfiguration class, 201–202

Port classes, 198
power, 204

batteries, 204–205
portable batteries, 205–207

printing, 207
Win32_DriverForDevice class, 207–208
Win32_Printer class, 208
Win32_PrintJob class, 210
Win32_TCPIPPrinterPort class, 211

provider managed, 20
telephony, 211–212
video, 212–214

system requirements, vi
SystemBios.vbs, 88
SystemClass class, abstract base classes, 158
SystemCreationClassName property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 19

SystemDriver class, 223
SystemLogicalMemoryConfiguration class, 228
SystemName property

CIM_pointingDevice class, 17
CIM_UserDevice class, 18
WIN32_PointingDevice class, 19

SystemSecurity class, 159, 278
abstract base classes, 158
displaying security information, 159–160
identifying caller rights, 161–163
setting security information, 160–161

SystemUptime.vbs, 260

T
tape drives, Win32_PhysicalMedia class, 196–197
TCPIPPrinterPort class, 211
technical support, vi–vii
telephony, system hardware classes, 211–212
TemperatureProbe class, 191
testing

Control tool, 296
diagnostic information, 298

Err.exe tool, 301
log files, 299–301
Mofcomp.exe tool, 301–302
verbose WMI logging, 298–299
WMIchk.exe tool, 302–303

local WMI service, 292
Scriptomatic, 294
status, 294–295
Wbemtest.exe, 295–296
WMI Control Properties console, 292–293

remote WMI service, 296
scripting interface, 297–298
steps, 303

Thread class, 232
timeout errors, NextEvent method, 104
TimeZone class, 223
tools. See also individual tools

companion CD, v

SWbemObjectSet object

Z08I622310.fm Page 366 Wednesday, September 28, 2005 2:07 AM

367

troubleshooting, 291, iv
Control tool, 296
diagnostic information, 298

Err.exe tool, 301
log files, 299–301
Mofcomp.exe tool, 301–302
verbose WMI logging, 298–299
WMIchk.exe tool, 302–303

local WMI service testing, 292
Scriptomatic, 294
status, 294–295
Wbemtest.exe, 295–296
WMI Control Properties console, 292–293

logging, 304–308
problem identification, 291–292
remote WMI service testing, 296
scripting interface, 297–298
scripts, 281–282
steps, 303

U
UNCServerName property, NTEventLogEventConsumer

class, 115
underscores (_), line continuation, 61
unformatted performance counters, 267–269
Universal Time Coordinate (UTC), 235–236
User parameter, ConnectServer method, 127
UserAccount class, 246
users

group classes, 246
accounts, 246–247
logon sessions, 246

mapping rights, share permissions, 284–285
UTC (Universal Time Coordinate), 235–236
utility scripts, companion CD, v

V
Verbose level, logging, 30
video

change notification scripts, 117–120
system hardware classes, 212–214

VideoConfiguration class, 212
VideoController class, 212
VideoSettings class, 212
View provider, 32
Viewprovider.log file, 300
virtual memory, 228
Volume class, 245

W
W32DiskDriveUseKerberos.vbs, 130
WBEM (Web-Based Enterprise Management), 3

handing off to provider, 23
implementation, 10–11
repository, 22

backing up, 32–33, 47–48
location, 22
restoring, 33–35
retrieving from, 23

troubleshooting WMI, 303
Wbemcore.log file, 31, 300
WBEM_ENABLE right, GetCallerAccessRights method, 162
wbemErrAccessDenied error message

ConnectServer method, 133
ExecNotificationQueryAsync method, 108

wbemErrFailed error message
ConnectServer method, 133
ExecNotificationQueryAsync method, 108
onCompleted event, 96

wbemErrInvalidNamespace error message, ConnectServer
method, 133

wbemErrInvalidParameter error message
ConnectServer method, 133
ExecNotificationQueryAsync method, 108

wbemErrInvalidQuery error message,
ExecNotificationQueryAsync method, 108

wbemErrInvalidQueryType error message,
ExecNotificationQueryAsync method, 108

wbemErrOutOfMemory error message
ConnectServer method, 133
ExecNotificationQueryAsync method, 108
onCompleted event, 96

wbemErrTimedOut error message, 104
wbemErrTransportFailure error message

ConnectServer method, 133
onCompleted event, 96

Wbemess.log file, 300
wbemFlagUseAmendedQualifiers, 90
WBEM_FULL_WRITE_REP right, GetCallerAccessRights

method, 162
WBEM_METHOD_EXECUTE right, GetCallerAccessRights

method, 162
WBEM_PARTIAL_WRITE_REP right, GetCallerAccessRights

method, 162
Wbemprox.log file, 300
WBEM_REMOTE_ACCESS right, GetCallerAccessRights

method, 162
Wbemtest.exe

local WMI service testing, 292, 295–296
troubleshooting scripts, 281–282

Wbemtest.exe

Z08I622310.fm Page 367 Wednesday, September 28, 2005 2:07 AM

368

WBEM_WRITE_PROVIDER right, GetCallerAccessRights
method, 162

Web-Based Enterprise Management (WBEM), 3
handing off to provider, 23
implementation, 10–11
repository, 22

backing up, 32–33, 47–48
location, 22
restoring, 33–35
retrieving from, 23

troubleshooting WMI, 303
Web sites

Administrative tools download, 110
DMTF (Desktop Management Task Force), 11
Microsoft

Scriptomatic download, 4
technical support, vi

Registration tool, 110
Where clause

queries, 56, 61–62
comparison operators, 64–65
compound, 66–67
everything from some, 62–64
IS NOT operator, 67–68
IS operator, 65–66
some from some, 65

references of command, 86
ClassDefsOnly keyword, 86
requiredQualifier keyword, 86–87
resultClass keyword, 87
role keyword, 88

Win32 WMI classes, 173
applications, 174–175
MSI installer provider, 179–180
services management, 181–183
software, 176–178

Win32_AutoChkSetting class, 195
WIN32_BaseBoard class, 164
WIN32_Baseboard.vbs, 164
Win32_BaseService class, 240
Win32_Battery class, 205
Win32_Battery.vbs, 205
Win32_CDROMDrive class, 195
WIN32_ClassicComClass class, 221–222
Win32_CodecFile class, 229
WIN32_ComputerSystem class, 61
Win32_CurrentTime class, 235
Win32_DataFile class, 229
Win32_Desktop class, 222
Win32_DesktopMonitor class, 212
Win32_DesktopMonitor.vbs, 212
Win32_Directory class, 224–225

Win32_DirectorySpecification class, 224
Win32_DiskDrive class, 196
Win32_DisplayConfiguration class, 212
WIN32_DisplayConfiguration.vbs, 60–61
Win32_DisplayControllerConfiguration class, 212
Win32_DriverForDevice class, 207–208
Win32_DriverForDevice.vbs, 208
Win32_DriverVXD class, 223
Win32_Environment class, 223
Win32_Fan class, 190
Win32_FloppyDrive class, 196
Win32_GroupDescriptionNotNull.vbs, 67
WIN32_GroupInDomain class, 84
WIN32_IP4RouteTableEvent class, 107
Win32_Keyboard class, 192
Win32_Keyboard.vbs, 192
Win32_LoadOrderGroup class, 232
Win32_LoadOrderGroup.vbs, 232
Win32_LocalTime class, 235
Win32_LogicalFileSecuritySetting class, 238
Win32_LogicalMemoryConfiguration class, 228
Win32_LogicalProgramGroup class, 244
Win32_LogicalProgramGroupItem class, 244
Win32_LogicalProgramGroup.vbs, 244
Win32_LogicalShareSecuritySetting class, 283
WIN32_LogonSession class, 84
Win32_LogonSession.vbs, 246
Win32_NamedJobObject class, 226
Win32_NamedJobObjectActgInfo class, 227
Win32_NamedJobObject.vbs, 226
Win32_NetworkAdapter class, 62, 199–200
Win32_NetworkAdapterConfiguration class, 201–202
Win32_NetworkAdapter.vbs, 200
WIN32_NTDomain class, 230

associations of command, 84
lab exploration, 76–77

Win32_NTLogEvent class, 247
Win32_NTLogEventLog class, 247
Win32_OperatingSystem class, 232
Win32_PageFile class, 228
Win32_PageFileElementSetting class, 228
Win32_PageFileSetting class, 228
Win32_PageFileUsage class, 228
Win32_PhysicalMedia class, 196–197
WIN32_PointingDevice class, 18, 193
Win32_PortableBattery class, 205
Win32_PortableBattery.vbs, 206
Win32_PortConnector class, 198
Win32_POTSModem class, 211
Win32_POTSModemToSerialPort class, 211
Win32_Printer class, 208
Win32_PrintJob class, 210

WBEM_WRITE_PROVIDER right

Z08I622310.fm Page 368 Wednesday, September 28, 2005 2:07 AM

369

WIN32_Process class, 67, 232
Win32_ProcessStartUp class, 231, 232
Win32_Product class, 184
WIN32_ProductSoftwareFeatures class, 82
Win32_ProgramGroup class, 244
Win32_ProgramGroupOrItem class, 244
Win32_ProxyClass class, 249
Win32_Registry class, 234
Win32_ScheduledJob class, 237–238
Win32_ServerConnection class, 243
Win32_ServerConnection.vbs, 243
Win32_ServerSession class, 243
WIN32_Service class, 6–7, 8–9, 240
Win32_Share class, 243
Win32_ShortCutAction class, 174
Win32_SoftwareElement class, 176–177
Win32_SoftwareFeature class, 178
Win32_SubDirectory class, 224
Win32_SystemDriver class, 223
Win32_SystemDriverSpecific.vbs, 223
Win32_SystemLogicalMemoryConfiguration class, 228
Win32_TapeDrive.vbs, 197
Win32_TCPIPPrinterPort class, 211
Win32_TemperatureProbe class, 191
Win32_Thread class, 232
Win32_TimeZone class, 223
Win32_UserAccount class, 246
Win32_UserAccount.vbs, 247
Win32_UserDesktop class, 223
Win32_VideoConfiguration class, 212
Win32_VideoController class, 212
Win32_VideoController.vbs, 214
Win32_VideoSettings class, 212
Win32_Volume class, 245
Win32_WindowsProductActivation class, 249
WIN32_WMISetting class, 45, 49–51, 181, 297
Windows Component Wizard, 179
Windows Installer provider, 174
Windows Management Instrumentation. See WMI
Windows Management Instrumentation Tester

(Wbemtest.exe), 292
Windows Script Host (WSH), 36
Windows Server 2003

new objects, 96–97
SWbemDateTime object, 97
SWbemObjectEx object, 97
SWbemRefresher object, 97–98
SWbemServicesEx object, 98

system requirements, vi

Windows XP
new objects, 96–97

SWbemDateTime object, 97
SWbemObjectEx object, 97
SWbemRefresher object, 97–98
SWbemServicesEx object, 98

system requirements, vi
WindowsProductActivation class, 249
Winmgmt.log file, 31, 300
winmgmts moniker, 7
WiredNetworkAdapter.vbs, 63–64
With End With statement, 75
WMI (Windows Management Instrumentation), 3, i

APIs, 19
architecture, 19
background, i–ii
CIM object describing, 11

classes, 16–19
namespaces, 12–14
providers, 15–16

configuring. See configuration
Control console, 9
defining, 3–6
infrastructure, 21

applications, 21–22
handing off to provider, 23
location of WBEM repository, 22
retrieving from repository, 23
WBEM repository, 22

objects managed by providers, 20–21
repository. See WBEM repository
return code capturing, 8
service queries, 6–7

defining, 7
evaluating state of service, 7

settings, 185–188
using as tool, 9–10
WBEM implementation, 10–11

WMI Administrative tools, download Web site, 110
WMI ADSI extensions, 19
WMI Control Properties dialog box, 10
WMI Control snap-in, 29–30, 35
WMI ODBC adapters, 19
WMI Query Language. See WQL
WMI Registration tool, download Web site, 110
WMI Security dialog box, 160
Wmiadap.log, 300
WMIcheck, v
WMIchk.exe tool, troubleshooting WMI, 302–303

WMIchk.exe tool

Z08I622310.fm Page 369 Wednesday, September 28, 2005 2:07 AM

370

Wmiprov.log file, 300
wmiQuery variable, 225
WMIScript_tocsv, vi
WMISetting class, 45, 49–51, 181, 297
WMISettings.vbs, 45
WMItools, vi
working sets, listing, 153
WQL (WMI Query Language), iii

queries, 56
WMI query, 7

WRITE_DAC right, GetCallerAccessRights method, 162
WriteProcessesAndServicesToTxt.vbs, 68
WSH (Windows Script Host), 36

Wmiprov.log file

Z08I622310.fm Page 370 Wednesday, September 28, 2005 2:07 AM

About the Author

Ed Wilson is a senior consultant on the Microsoft Corporation ProActive Consulting team. He
has worked with some of the world’s largest Microsoft customers, helping them leverage the
power of Microsoft Windows Management Instrumentation (WMI) scripting to manage their

ing and administration classes. He has delivered his Microsoft Visual Basic Scripting Edition
(VBScript) workshop to hundreds of premier customers, as well as to Microsoft employees. Ed
has written or contributed to nine books and holds nearly two dozen industry certifications,

tem Security Professional (CISSP) certifications. Ed is the author of the extremely popular
Microsoft Windows Scripting Self-Paced Learning Guide.

enterprise server farms. He is a Microsoft Certified Trainer and has taught numerous network-

including the Microsoft Certified System Engineer (MCSE) and the Certified Information Sys-
371

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	About This Book
	Background
	Editorial Objectives and Approach
	Is This Book for Me?
	Organization of the Book
	Part I: Getting Started with WMI
	Part II: WMI Queries and Events
	Part III: Connect Server and Additional Privileges
	Part IV: Classes
	Part V: Security and Troubleshooting
	Part VI: Appendixes

	About the Companion CD
	Computer System Requirements
	Technical Support

	Part I: Getting Started with WMI
	Chapter 1: Introducing WMI
	Before You Begin
	Defining WMI
	Querying and Starting a Service
	Defining the Query
	Evaluating the State of the Service

	Capturing the Return Code
	Using WMI as a Tool
	Implementing Microsoft WBEM
	Describing Objects Using the CIM
	Working with Namespaces
	Working with Providers
	Understanding Classes

	Implementing Programming Interfaces
	Using the WMI Architecture
	Using Managed Objects and Providers
	WMI Infrastructure
	WMI Applications
	WBEM Repository
	Location
	Retrieving from the Repository
	Handing Off to a Provider

	Summary
	Quiz Yourself
	On Your Own
	Lab 1 Installing and Configuring the Core Platform SDK
	Lab 2 Online Install (Optional)
	Lab 3 Navigating the SDK

	Chapter 2: Configuring WMI
	Before You Begin
	Understanding the WMI Control Snap-in
	Configuring Logging
	Backing Up the WMI Repository
	Restoring the WMI Repository
	Changing the Target of Operations
	Understanding Registry Settings
	Enabled
	LogSecurityFailures
	LogSecuritySuccesses
	Remote

	Using the CIM Object Manager
	Implementing Providers
	Configuring WMI Service Settings

	Automatically Recovering Providers
	Initial Installation
	Manually Editing the Autorecover MOF Key
	Adding the #pragma autorecover tag to the MOF File
	Using Mofcomp.exe

	Exploring WMI Settings with WMI
	Summary
	Quiz Yourself
	On Your Own
	Lab 4 Backing Up the WMI Repository
	Lab 5 Restoring the WMI Repository
	Lab 6 Exploring WMI Settings via Script

	Part II: WMI Queries and Events
	Chapter 3: Using Basic WMI Queries
	Before You Begin
	Understanding WQL
	Using the Moniker
	The Prefix
	The Security
	The Path

	Using the Defaults
	Understanding Data Queries
	Using the Select Statement
	Select Everything from Everything
	Select Some Things from Everything

	Where Is the Where Clause?
	Select Everything from Some Things
	Comparison Operators
	Select Some Things from Some Things
	IS Operator
	Compound Where Clause
	Is Not Operator

	Understanding Event Queries
	Understanding Schema Queries
	SWbemObject
	SWbemObjectPath

	Summary
	Quiz Yourself
	On Your Own
	Lab 7 Exploring Win32_NTDomain
	Lab 8 Using Schema Queries

	Chapter 4: Using Advanced WMI Queries
	Before You Begin
	Using __Class
	Using ISA
	Scripting API Objects
	SWbemServices

	Using the associators of Command
	Using the references of Command
	Modifying the Where clause

	Using the ExecQuery Method
	Returning an SWbemObjectSet Collection
	Iflags
	Error Codes

	Using the Get Method
	SWbemLastError
	SWbemObject
	SWbemObjectPath
	SWbemObjectSet
	SWbemProperty
	SWbemPropertySet
	SWbemSink

	Introducing New Objects in Windows XP and Windows Server 2003
	SWbemDateTime
	SWbemObjectEx
	SWbemRefresher
	SWbemRefreshableItem
	SWbemServicesEx

	Summary
	Quiz Yourself
	On Your Own
	Lab 9 Working with the AutoDiscovery Process
	Lab 10 Using the Get Method for Inventory Types of Data

	Chapter 5: Using WMI Events
	Before You Begin
	Using SWbemEventSource
	NextEvent
	Security_

	Working with SWbemServices
	ExecNotificationQuery
	ExecNotificationQueryAsync

	Understanding Event Consumers
	Creating an Instance of the Consumer
	Creating an Event Filter
	Creating an Event Query
	Binding the Filter to the Consumer
	ActiveScriptEventConsumer

	Using SMTPEventConsumer
	Understanding the New Event Consumers
	LogFileEventConsumer
	NTEventLogEventConsumer
	CommandLineEventConsumer

	Working with Different Types of Events
	Class Events
	Instance Events
	Namespace Events
	Eventing Events

	Summary
	Quiz Yourself
	On Your Own
	Lab 11 Creating a Video Change Notification Script
	Lab 12 Expanding the Video Notification Script

	Part III: Connect Server and Additional Privileges
	Chapter 6: Using the SWbemLocator Methods
	Before You Begin
	Using the Locator Object
	Using Alternate Credentials

	Using ConnectServer in Different Ways
	Changing the Defaults
	Omitting Fields

	Summary
	Quiz Yourself
	On Your Own
	Lab 13 Using the ConnectServer Method Locally
	Lab 14 Using Alternate Credentials in a Script

	Chapter 7: Requesting Additional Privileges for WMI
	Before You Begin
	Understanding Privileges
	Obtaining a Collection of Privileges
	Representing a Single Privilege
	Adding Additional Privileges
	Adding a Privilege with Add
	Adding a Privilege as a String
	Using the Item Method
	Using the DeleteAll Method
	Removing a Specific Privilege
	Finding the Most Common Privileges

	Using Privileges
	In the Moniker
	Using SWbemLocator

	Summary
	Quiz Yourself
	On Your Own
	Lab 15 Setting the Page File Size
	Lab 16 Listing the Working Set

	Part IV: Classes
	Chapter 8: Understanding WMI Classes
	Before You Begin
	Using the System Classes
	Abstract Base Classes
	Using System Classes as Base Classes
	Identifying the Version of WMI
	Working with System Security

	Understanding the CIM Classes
	CIM Classes Are Really DMTF Classes

	Summary
	Quiz Yourself
	On Your Own
	Lab 17 Exploring Abstract Classes
	Lab 18 Examining WMI Classes

	Chapter 9: Using Win32 WMI Classes
	Before You Begin
	Working with Applications
	Working with Software Classes
	Understanding the MSI Installer Provider

	Understanding WMI Service Management
	Writing to the Properties

	Summary
	Quiz Yourself
	On Your Own
	Lab 19 Working with the Win32_Product Class
	Lab 20 Making Changes to WMI Settings

	Chapter 10: Using System Hardware Classes
	Before You Begin
	Using Cooling Device Classes
	Working with Win32_Fan
	Probing the Win32_TemperatureProbe Class

	Examining the Input Device Classes
	Working with the Win32_Keyboard Class
	Working with the Win32_PointingDevice Class

	Mass Storage Classes
	Checking the Autocheck Settings
	Examining the Win32_CDROMDrive Class
	Examining the Disk Drive
	Examining the Floppy Drive
	Working with Tapes

	Motherboard, Controller, and Port Classes
	Reporting with Port Classes

	Networking Device Classes
	Working with the Network Adapter Class
	Using the Adapter Configuration Class

	Power Classes
	Batteries Are Included
	Using Portable Batteries

	Printing Classes
	Finding Drivers Used for Print Devices
	Printing Information on Printers
	Printing the Print Jobs
	Working with Printer Ports

	Telephony Classes
	Video and Monitor Classes
	Displaying the Display
	Controlling the Video

	Summary
	Quiz Yourself
	On Your Own
	Lab 21 Hardware Inventory

	Chapter 11: Using Operating System Classes
	Before You Begin
	Using the COM-Related Classes
	Using the Win32_ClassicComClass

	Examining the Desktop
	Listing the Drivers on a System
	Examining System Drivers

	Exploring the File System
	Working with Directories
	Getting the Win32_Directory Class

	Understanding Job Objects
	Identifying Named Job Objects
	Identifying Resources Used by Job Objects

	Working with Memory Devices and Page Files
	Setting the Page File

	Using the Multimedia Audiovisual Class
	Retrieving a Single Codec

	Working with Networking
	Using Operating System Events
	Examining Operating System Settings
	Employing the Process Classes
	Configuring Application Startup

	Working with the Registry
	Modifying the Registry Size

	Leveraging the Scheduler Job Classes
	Marking Time
	Working with the Job Scheduler

	Using the Security Classes
	Reading Security on a Folder

	Using the Service Classes
	Creating a Service
	Deleting a Service

	Working with Shares
	Reporting Connections to the Servers

	Starting with the Start Menu
	Monitoring Storage
	Using the Win32_Volume Methods

	Understanding User Classes
	Working with Logon Sessions
	Working with User Accounts

	Leveraging the Windows NT Event Log
	Backing Up Event Log Files

	Easing Windows Product Activation
	Summary
	Quiz Yourself
	On Your Own
	Lab 22 Monitoring the Shutdown of Applications
	Lab 23 Performing a Controlled Shutdown of Apps

	Chapter 12: Using the Performance Counter Classes
	Before You Begin
	Using Formatted Performance Counter Classes
	Understanding Performance Counter Classes

	Refreshing the Data
	Using the Refresher Object
	Refreshing a Single Counter
	Finding How Long Your System Has Been Up
	Examining Process Threads
	Measuring Memory Utilization

	Using Raw Performance Counter Classes
	Monitoring Processor Utilization
	Working with the Logical Disk

	Summary
	Quiz Yourself
	On Your Own
	Lab 24 Working with Formatted Performance Classes
	Lab 25 Using Unformatted Performance Counters

	Part V: Security and Troubleshooting
	Chapter 13: Understanding WMI Security
	Before You Begin
	Using WMI Namespace Security
	Understanding the Defaults

	Modifying Security on WMI Namespaces
	Working with Namespace Security Descriptors
	Using the WMI Control Tool to Set Security

	Scripting WMI Namespace Security
	Using the __SystemSecurity Class

	Working with Share Permissions
	Who Has Access to This Share?
	Mapping Users and Rights

	Summary
	Quiz Yourself
	On Your Own
	Lab 26 Creating a WMI Namespace
	Lab 27 Setting WMI Namespace Permissions

	Chapter 14: Troubleshooting WMI
	Before You Begin
	Identifying the Problem
	Spotting Common Sources of Errors

	Testing the Local WMI Service
	Using the WMI Control Tool
	Using Scriptomatic
	Examining the Status of the WMI Service
	Using Wbemtest.exe

	Testing Remote WMI Service
	Using the WMI Control Tool Remotely

	Testing the Scripting Interface
	Obtaining Diagnostic Information
	Enabling Verbose WMI Logging
	Examining the WMI Log Files
	Using the Err Tool
	Using Mofcomp.exe
	Using WMIchk

	General WMI Troubleshooting Steps
	Summary
	Quiz Yourself
	On Your Own
	Lab 28 Working with Logging
	Lab 29 Compiling MOF Files

	Part VI: Appendixes
	Appendix A: Scripting API Methods and Properties
	Appendix B: WMI Security Constants
	Appendix C: WMI Security Privileges and Operations
	Appendix D: Computer System Hardware Classes
	Appendix E: Operating System Classes
	Appendix F: Performance Monitor Classes

	Index
	About the Author

